
Bacula Storage Management System

The Bacula
®

 Storage Management System Version
1.36.0

It comes by night and sucks the vital essence from your
computers

This document was last updated 20 October 2004.

If you are viewing this document with Netscape, it probably looks really poor.
I recommend that you use Galeon or Mozilla instead.

General Documents

What is Bacula?•
What Is and What Is Not Implemented•
Supported Systems and Hardware•

System Requirements♦
Supported Operating Systems♦
Supported Tape Drives♦
Unsupported Tape Drives♦
Supported Autochanger Models♦

Quick Start Guide to Bacula•

Understanding Pools, Volumes and Labels♦
Setting Up Bacula Configuration Files♦
Testing your Configuration Files♦
Testing Bacula Compatibility with Your Tape Drive♦
Get Rid of the /lib/tls Directory♦
Running Bacula♦

Compiling and Installing Bacula•

Upgrading Bacula♦
Dependency Packages♦
Building from Source♦
What Database to Use?♦
Configure Options♦
Auto Starting the Daemons♦
Installing Tray Monitor♦
Configuring and Testing TCP Wrappers♦

A Brief Tutorial on How to Run Bacula•

Starting the Database♦
Starting the Daemons♦
Running a Job♦
Restoring Your Files♦
Adding a Second Client♦
What To Do When The Tape Fills♦

The Bacula® Storage Management System Version 1.36.0 1

http://galeon.sourceforge.net
http://www.mozilla.org

Labeling Your Volumes♦
Creating a Pool♦

Customizing Bacula Configuration Files•

Resource Record Format♦
Comments♦
Upper and Lower Case and Space♦
Including Other Configuration Files♦
Data Types♦
Resource Types♦
Names, Passwords and Authorization♦
Director Configuration Resources♦

Catalog Resource◊
Client Resource◊
Console Resource◊
Counter Resource◊
Director Resource◊
FileSet Resource◊
Job Resource◊
JobDefs Resource◊
Messages Resource◊
Pool Resource◊
Schedule Resource◊
Storage Resource◊
Sample Director Configuration File◊

Client/File Daemon Configuration Resources♦

Client Resource◊
Director Resource◊
Messages Resource◊
Sample Client Configuration File◊

Storage Daemon Configuration Resources♦

Storage Resource◊
Director Resource◊
Device Resource◊
Messages Resource◊
Sample Storage Configuration File◊

Console Configuration Resources♦

Director Resource◊
Sample Console Configuration File◊

Monitor Configuration Resources♦

Monitor Resource◊
Director Resource◊
Client Resource◊
Storage Resource◊
Sample Monitor configuration file and related daemons' configuration records.◊

Variable Expansion♦

Bacula Storage Management System

The Bacula® Storage Management System Version 1.36.0 2

Running Bacula from the Console Program•

Alphabetic List of Console Commands♦
List of Dot commands♦
List of At (@) commands♦
Running the Console from a Shell Script♦

Critical Items Before Going Production•
Restoring Files•

General♦
Interactive Restore Example♦
Command Line Arguments♦
Restoring on Windows♦
File Selection Command♦

Maintaining your Catalog•

Setting Retention Periods♦
Compacting Your MySQL Database♦
Reparing Your MySQL Database♦
Reparing Your PostgreSQL Database♦
Compacting Your SQLite Database♦
Backing Up Your Bacula Database♦
Backing Up Third Party Databases♦
Database Size♦

Recycling your Volumes•

Automatic Recycling Tapes♦
Automatic Pruning♦
Recycling Algorithm♦
Making Bacula Use a Single Tape♦
A Daily, Weekly, Monthly Tape Usage Example♦
Automatic Pruning and Recycling Example♦
Manually Recycling Tapes♦

Basic Volume Management•

Key Concepts and Resource Records♦
Automatic Volume Labeling♦
Restricting Volumes and Recycling♦
An Example Conf File♦
Backing up to Multiple Disks♦
Considerations for Multiple Clients♦

Using Pools to Manage Volumes•

The Problem♦
The Solution♦
Overall Design♦
Full Pool♦
Differential Pool♦
Incremental Pool♦
The Actual Conf Files♦

Backup Strategies•

Bacula Storage Management System

The Bacula® Storage Management System Version 1.36.0 3

Simple One Tape Backup♦
Manually Changing Tapes♦
Daily Tape Rotation♦

Autochanger Support in Bacula•

Supported Autochanger Models♦
Knowing What SCSI Devices You Have♦
Example Scripts♦
Slots♦
Multiple Devices♦
Device Configuration Records♦
An Example Configuration File♦
Specifying Slots When Labeling♦
Dealing with Multiple Magazines♦
Simulating Barcodes in your Autochanger♦
The Full Form of the Update Slots Command♦
FreeBSD Issues♦
Testing the Autochanger and Adapting Your mtx−changer Script♦
Using the Autochanger♦
Barcode Support♦
Bacula Autochanger Interface♦

Data Spooling•

Data Spooling Directives♦
!!! MAJOR WARNING !!!♦
Other Points♦

Frequently Asked Questions
What is Bacula?♦
What Language is Bacula Written in?♦
On What Machines does it Run?♦
Is Bacula Stable?♦
Authorization Errors♦
Access Problems♦
>My Catalog is Full of Test Runs, How Can I Start Over?♦
I Run a Restore Job and Bacula Hangs. What do I do?♦
I Cannot Get My Windows Client to Start Automatically?♦
My Windows Client Immediately Dies When I Start It♦
When I Start the Console, the Error Messages Fly By. How can I see them?♦
I didn't realize that the backups were not working on my Windows Client.♦
All my Jobs are scheduled for the same time. Will this cause problems?♦
Can Bacula Backup My System To Files instead of Tape?♦
Why aren't my Files Compressed?♦
Can Bacula Backup and Restore Files Greater than 2 Giga Bytes in Size?♦
How do I Cancel a Job?♦
Why have You Trademarked the Name Bacula?♦
Why is Your Online Doc for Version 1.35 when the Current version is 1.34?♦
Why is Bacula Requesting a New Tape Too Often?♦
How Can I Be Sure that Bacula Really Saves and Restores All Files?♦
I did a Full Bacula and now asked for an Incremental bug got another Full♦
Can Bacula Handle Large Filename Lengths?♦
What Is the Really Unique Feature of Bacula?♦

•

Bacula Storage Management System

The Bacula® Storage Management System Version 1.36.0 4

Can I force Jobs to Run in a Particular Order?♦
I Am Not Getting Email Notification, What Can I Do?♦
Bacula Changes Backup Levels♦
I Change Recycling, Retention Periods, or File Sizes in my Pool Resource and they Still
Don"t Work.

♦

Accessing Offsite Machines Waits Forever♦
SSH Hangs After Starting Bacula♦
Why are there So Many Retention Periods?♦
Why is MaxVolumeSize Ignored?♦
Why do I get Packet too big. Connection Refused?♦

Tips and Suggestions for Managing Bacula•

Sample Scripts♦
Upgrading Bacula Versions♦
Getting Notified of Job Completion♦
Getting Email Notification to Work♦
Maintaining a Valid Bootstrap File♦
Rejected Volumes After a Crash♦
Security Considerations♦
Creating Holiday Schedules♦
Automatic Labeling Using Your Autochanger♦
Backing Up Portables Using DHCP♦
Going on Vacation♦
How to Exclude Files on Windows Regardless of Case♦
Executing Scripts on a Remote Machine♦
Recycling All Your Volumes♦
Backing up ACLs on ext3 or XFS filesystems♦
Total Automation of Bacula Tape Handling♦
Running Concurrent Jobs♦

Bacula Utility Programs•

bls −− Listing the Contents of a Volume♦
bextract −− Extracting Files from a Volume♦
bscan −− Recreating a Database from a Volume♦
bcopy −− Copy an Archive from one Volume to Another♦
btape −− Testing Your Tape Drive♦
bsmtp −− Customizing Your Email Messages♦
dbcheck −− Run a Consistency Check on Your Database♦
testfind −− Test Run the Include Find Algorithm♦
bimagemgr −− Web CD Burner Interface♦

Testing Your Tape Drive With Bacula•

Summary of Steps to Take to Get Your Tape Drive Working♦
btape♦
Tips for Resolving Problems♦
Bacula Cannot Open the Device♦
Incorrect File Number♦
Incorrect Number of Blocks or Positioning Errors♦
Ensuring that the Tape Modes Are Properly Set −− Linux Only♦
Checking and Setting Tape Hardware Compression and Block Sizes♦
The OnStream Tape Driver♦

Bacula Storage Management System

The Bacula® Storage Management System Version 1.36.0 5

Tape Modes on FreeBSD♦
Testing Filling a Tape♦
Recovering Files Written to Tape With Fixed Block Sizes♦
Tape Blocking Modes♦

What To Do When Bacula Crashes (Kaboom)•
The Windows Version of Bacula•

Installation♦
Upgrading♦
Problems♦
Compatibility Considerations♦

Disaster Recovery Using a Bacula Rescue CDROM•

Steps to Take Before Disaster Strikes♦
Important Considerations♦
Bare Metal Recovery on Linux with a Bacula Rescue CDROM♦
Putting Two or More Systems on Your Rescue Disk♦
Restoring a Client System♦
Restoring a Server♦
Linux Problems and Bugs♦
FreeBSD Bare Metal Recovery♦
Solaris Bare Metal Recovery♦
General Bugs and other Considerations♦
Disaster Recover of Win32 Systems♦
Additional Resources♦
Disaster Recovery Using a Bacula Rescue Floppy♦

Bare Metal Floppy Recovery on Linux with a Bacula Floppy Rescue Disk◊
Restoring Your Linux Client with a Floppy◊
Linux Problems or Bugs◊

Using stunnel to Encrypt Communications to Clients♦
Security Issues♦
Firewall Issues♦
Using Bacula to Improve Computer Security♦
Bacula − RPM Packaging FAQ♦
The Bootstrap File♦
Installing and Configuring MySQL♦
Installing and Configuring PostgreSQL♦
Installing and Configuring SQLite♦
Installing and Configuring the Internal Database♦
Bacula Copyright and Licenses♦

GPL◊
LGPL◊

Bacula Projects•
Thanks and Acknowledgments•

Bugs

Bugs•

Bacula Storage Management System

Bugs 6

Bacula Developer and Design Document

Bacula Developer and Design Document•

Bacula® is a registered trademark of Kern Sibbald and John Walker. The use of the name Bacula is restricted
to software systems that agree exactly with the program presented here.

Copyright (C) 2000−2004 Kern Sibbald and John Walker.
Bacula source code is released under the GNU General Public License version 2 with additional restrictions as
noted in the file LICENSE in the main source directory.

For more information on the project, please visit the main web site at http://www.bacula.org.

Bacula 1.36 User's Guide

Index Features

Bacula Storage Management System

Bacula Developer and Design Document 7

http://www.bacula.org

What is Bacula?
Bacula is a set of computer programs that permit you (or the system administrator) to manage backup, recovery,
and verification of computer data across a network of computers of different kinds. In technical terms, it is a
network Client/Server based backup program. Bacula is relatively easy to use and efficient, while offering many
advanced storage management features that make it easy to find and recover lost or damaged files. Due to its
modular design, Bacula is scalable from small single computer systems to systems consisting of hundreds of
computers located over a large network.

Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup your computer data, and you would
like a network solution, more flexibility, or catalog services, Bacula will most likely provide the additional
features you want. However, if you are new to Unix systems or do not have offsetting experience with a
sophisticated backup package, we do not recommend using Bacula as it is much more difficult to setup and use
than tar or dump.

If you are running Amanda and would like a backup program that can write to multiple volumes (i.e. is not
limited by your tape drive capacity), Bacula can most likely fill your needs. In addition, quite a number of our
users report that Bacula is simpler to setup and use than other equivalent programs.

If you are currently using a sophisticated commercial package such as Legato Networker. ARCserveIT, Arkeia,
or PerfectBackup+, you may be interested in Bacula, which provides many of the same features, and is free
software available under the GNU Version 2 software license.

Bacula Components or Services

Bacula is made up of the following five major components or services:

What is Bacula? 8

 (thanks to Aristedes Maniatis for this graphic and the one below)

Bacula Director service consists of the program that supervises all the backup, restore, verify and
archive operations. The system administrator uses the Bacula Director to schedule backups and to
recover files. For more details see the Director Services Daemon Design Document. The Director runs as
a daemon or a service (i.e. in the background).

•

Bacula Console services is the program that allows the administrator or user to communicate with the
Bacula Director (see above). Currently, the Bacula Console is available in three versions. The first and
simplest is to run the Console program in a shell window (i.e. TTY interface). Most system
administrators will find this completely adequate. The second version is a GNOME GUI interface that
for the moment (23 November 2003) is far from complete, but quite functional as it has most the

•

Bacula Storage Management System

What is Bacula? 9

capabilities of the shell Console. The third version is a wxWidgets GUI with an interactive file restore. It
also has most the capabilities of the shell console, allows command completion with tabulation, and
gives you instant help about the command you are typing. For more details see the Bacula Console
Design Document.
Bacula File services (or Client program) is the software program that is installed on the machine to be
backed up. It is specific to the operating system on which it runs and is responsible for providing the file
attributes and data when requested by the Director. The File services are also responsible for the file
system dependent part of restoring the file attributes and data during a recovery operation. For more
details see the File Services Daemon Design Document. This program runs as a daemon on the machine
to be backed up, and in some of the documentation, the File daemon is referred to as the Client (for
example in Bacula's configuration file). In addition to Unix/Linux File daemons, there is a Windows File
daemon (normally distributed in binary format). The Windows File daemon runs on all currently known
Windows versions (95, 98, Me, NT, 2000, XP).

•

Bacula Storage services consist of the software programs that perform the storage and recovery of the
file attributes and data to the physical backup media or volumes. In other words, the Storage daemon is
responsible for reading and writing your tapes (or other storage media, e.g. files). For more details see the
Storage Services Daemon Design Document. The Storage services runs as a daemon on the machine that
has the backup device (usually a tape drive).

•

Catalog services are comprised of the software programs responsible for maintaining the file indexes
and volume databases for all files backed up. The Catalog services permit the System Administrator or
user to quickly locate and restore any desired file. The Catalog services sets Bacula apart from simple
backup programs like tar and bru, because the catalog maintains a record of all Volumes used, all Jobs
run, and all Files saved, permitting efficicient restoration and Volume management. Bacula currently
supports three different databases, MySQL, PostgreSQL, and SQLite, one of which must be chosen when
building Bacula. There also exists an Internal database, but it is no longer supported.

•

The three SQL databases currently supported (MySQL, PostgreSQL or SQLite) provide quite a number
of features, including rapid indexing, arbitrary queries, and security. Although we plan to support other
major SQL databases, the current Bacula implementation interfaces only to MySQL, PostgreSQL and
SQLite. For more details see the Catalog Services Design Document.

The RPMs for MySQL and PostgreSQL ship as part of the Linux RedHat release, or building it from the
source is quite easy, see the Installing and Configuring MySQL chapter of this document for the details.
For more information on MySQL, please see: www.mysql.com. Or see the Installing and Configuring
PostgreSQL chapter of this document for the details. For more information on PostgreSQL, please see:
www.postgresql.org.

Configuring and building SQLite is even easier. For the details of configuring SQLite, please see the
Installing and Configuring SQLite chapter of this document.

Bacula Monitor services is the program that allows the administrator or user to watch current status of
Bacula Directors, Bacula File Daemons and Bacula Storage Daemons (see above). Currently, only a
GTK+ version is available, which works with Gnome and KDE (or any window manager that supports
the FreeDesktop.org system tray standard).

•

To perform a successful save or restore, the following four daemons must be configured and running: the
Director daemon, the File daemon, the Storage daemon, and MySQL, PostgreSQL or SQLite.

Bacula Storage Management System

What is Bacula? 10

Bacula Configuration

In order for Bacula to understand your system, what clients you want backed up, and how, you must create a
number of configuration files containing resources (or objects). The following presents an overall picture of this:

Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not always agree with the code. If an
item in this manual is preceded by an asterisk (*), it indicates that the particular feature is not implemented. If it

Bacula Storage Management System

Bacula Configuration 11

is preceded by a plus sign (+), it indicates that the feature may be partially implemented.

If you are reading this manual as supplied in a released version of the software, the above paragraph holds true. If
you are reading the online version of the manual, www.bacula.org/manual, please bear in mind that this version
describes the current version in development (in the CVS) that may contain features not in the released version.
Just the same, it generally lags behind the code a bit.

Quick Start

To get Bacula up and running quickly, we recommend that you first scan the Terminology section below, then
quickly review the next chapter entitled The Current State of Bacula, then the Quick Start Guide to Bacula, which
will give you a quick overview of getting Bacula running. After which, you should proceed to the chapter on
Installing Bacula, then How to Configure Bacula, and finally the chapter on Running Bacula.

Terminology

To facilitate communication about this project, we provide here the definitions of the terminology that we use.

Administrator
The person or persons responsible for administrating the Bacula system.

Backup
We use the term Backup to refer to a Bacula Job that saves files.

Bootstrap File
The bootstrap file is an ASCII file containing a compact form of commands that allow Bacula or the
stand−alone file extraction utility (bextract) to restore the contents of one or more Volumes, for
example, the current state of a system just backed up. With a bootstrap file, Bacula can restore your
system without a Catalog. You can create a bootstrap file from a Catalog to extract any file or files you
wish.

Catalog
The Catalog is used to store summary information about the Jobs, Clients, and Files that were backed up
and on what Volume or Volumes. The information saved in the Catalog permits the administrator or user
to determine what jobs were run, their status as well as the important characteristics of each file that was
backed up. The Catalog is an online resource, but does not contain the data for the files backed up. Most
of the information stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file in addition to the File Attributes (see below).
The catalog feature is one part of Bacula that distinguishes it from simple backup and archive programs
such as dump and tar.

Client
In Bacula's terminology, the word Client refers to the machine being backed up, and it is synonymous
with the File services or File daemon, and quite often, we refer to it as the FD. A Client is defined in a
configuration file resource.

Console
The program that interfaces to the Director allowing the user or system administrator to control Bacula.

Daemon
Unix terminology for a program that is always present in the background to carry out a designated task.
On Windows systems, as well as some Linux systems, daemons are called Services.

Directive
The term directive is used to refer to a statement or a record within a Resource in a configuration file that
defines one specific thing. For example, the Name directive defines the name of the Resource.

Bacula Storage Management System

Quick Start 12

Director
The main Bacula server daemon that schedules and directs all Bacula operations. Occassionally, we refer
to the Director as DIR.

Differential
A backup that includes all files changed since the last Full save started. Note, other backup programs
may define this differently.

File Attributes
The File Attributes are all the information necessary about a file to identify it and all its properties such
as size, creation date, modification date, permissions, etc. Normally, the attributes are handled entirely by
Bacula so that the user never needs to be concerned about them. The attributes do not include the file's
data.

File Daemon
The daemon running on the client computer to be backed up. This is also referred to as the File services,
and sometimes as the Client services or the FD.

FileSet
A FileSet is a Resource contained in a configuration file that defines the files to be backed up. It consists
of a list of included files or directories, a list of excluded files, and how the file is to be stored
(compression, encryption, signatures). For more details, see the FileSet Resource definition in the
Director chapter of this document.

Incremental
A backup that includes all files changed since the last Full, Differential, or Incremental backup started. It
is normally specified on the Level directive within the Job resource definition, or in a Schedule resourc.

Job
A Bacula Job is a configuration resource that defines the work that Bacula must perform to backup or
restore a particular Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
incremental,...), the FileSet, and Storage the files are to be backed up (Storage device, Media Pool). For
more details, see the Job Resource definition in the Director chapter of this document.

Monitor
The program that interfaces to the all the daemons allowing the user or system administrator to monitor
Bacula status.

Resource
A resource is a part of a configuration file that defines a specific unit of information that is available to
Bacula. For example, the Job resource defines all the properties of a specific Job: name, schedule,
Volume pool, backup type, backup level, ...

Restore
A restore is a configuration resource that describes the operation of recovering a file (lost or damaged)
from backup media. It is the inverse of a save, except that in most cases, a restore will normally have a
small set of files to restore, while normally a Save backs up all the files on the system. Of course, after a
disk crash, Bacula can be called upon to do a full Restore of all files that were on the system.

Schedule
A Schedule is a configuration resource that defines when the Bacula Job will be scheduled for execution.
To use the Schedule, the Job resource will refer to the name of the Schedule. For more details, see the
Schedule Resource definition in the Director chapter of this document.

Service
This is Windows terminology for a daemon −− see above. It is now frequently used in Unix
environments as well.

Storage Coordinates
The information returned from the Storage Services that uniquely locates a file on a backup medium. It
consists of two parts: one part pertains to each file saved, and the other part pertains to the whole Job.
Normally, this information is saved in the Catalog so that the user doesn't need specific knowledge of the
Storage Coordinates. The Storage Coordinates include the File Attributes (see above) plus the unique

Bacula Storage Management System

Quick Start 13

location of the information on the backup Volume.
Storage Daemon

The Storage daemon, sometimes referred to as the SD, is the code that writes the attributes and data to a
storage Volume (usually a tape or disk).

Session
Normally refers to the internal conversation between the File daemon and the Storage daemon. The File
daemon opens a session with the Storage daemon to save a FileSet, or to restore it. A session has a one to
one correspondence to a Bacula Job (see above).

Verify
A verify is a job that compares the current file attributes to the attributes that have previously been stored
in the Bacula Catalog. This feature can be used for detecting changes to critical system files similar to
what Tripwire does. One of the major advantages of using Bacula to do this is that on the machine you
want protected such as a server, you can run just the File daemon, and the Director, Storage daemon, and
Catalog reside on a different machine. As a consequence, if your server is ever compromised, it is
unlikely that your verification database will be tampered with.
Verify can also be used to check that the most recent Job data written to a Volume agrees with what is
stored in the Catalog (i.e. it compares the file attributes), *or it can check the Volume contents against the
original files on disk.

*Archive
An Archive operation is done after a Save, and it consists of removing the Volumes on which data is
saved from active use. These Volumes are marked as Archived, and many no longer be used to save files.
All the files contained on an Archived Volume are removed from the Catalog. NOT YET
IMPLEMENTED.

*Update
An Update operation causes the files on the remote system to be updated to be the same as the host
system. This is equivalent to an rdist capability. NOT YET IMPLEMENTED.

Retention Period
There are various kinds of retention periods that Bacula recognizes. The most important are the File
Retention Period, Job Retention Period, and the Volume Retention Period. Each of these retention
periods applies to the time that specific records will be kept in the Catalog database. This should not be
confused with the time that the data saved to a Volume is valid.
The File Retention Period determines the time that File records are kept in the catalog database. This
period is important because the volume of the database File records by far use the most storage space in
the database. As a consequence, you must ensure that regular "pruning" of the database file records is
done. (See the Console retention command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the database. Note, all the
File records are tied to the Job that saved those files. The File records can be purged leaving the Job
records. In this case, information will be available about the jobs that ran, but not the details of the files
that were backed up. Normally, when a Job record is purged, all its File records will also be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before it is reused.
Bacula will normally never overwrite a Volume that contains the only backup copy of a file. Under ideal
conditions, the Catalog would retain entries for all files backed up for all current Volumes. Once a
Volume is overwritten, the files that were backed up on that Volume are automatically removed from the
Catalog. However, if there is a very large pool of Volumes or a Volume is never overwritten, the Catalog
database may become enormous. To keep the Catalog to a manageable size, the backup information
should removed from the Catalog after the defined File Retention Period. Bacula provides the
mechanisms for the catalog to be automatically pruned according to the retention periods defined.

Bacula Storage Management System

Quick Start 14

Scan
A Scan operation causes the contents of a Volume or a series of Volumes to be scanned. These Volumes
with the information on which files they contain are restored to the Bacula Catalog. Once the information
is restored to the Catalog, the files contained on those Volumes may be easily restored. This function is
particularly useful if certain Volumes or Jobs have exceeded their retention period and have been pruned
or purged from the Catalog. Scanning data from Volumes into the Catalog is done by using the bscan
program. See the bscan section of the Bacula Utilities Chapter of this manual for more details.

Volume
A Volume is an archive unit, normally a tape or a named disk file where Bacula stores the data from one
or more backup jobs. All Bacula Volumes have a software label written to the Volume by Bacula so that
it identify what Volume it is really reading. (Normally there should be no confusion with disk files, but
with tapes, it is easy to mount the wrong one).

What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete disaster recovery system in itself, but
it can be a key part of one if you plan carefully and follow the instructions included in the Disaster Recovery
Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter Bacula can be a central component of your
disaster recovery system. For example, if you have created an emergency boot disk, a Bacula Rescue disk to save
the current partitioning information of your hard disk, and maintain a complete Bacula backup, it is possible to
completely recover your system from "bare metal".

If you have used the WriteBootstrap record in your job or some other means to save a valid bootstrap file, you
will be able to use it to extract the necessary files (without using the catalog or manually searching for the files to
restore).

Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bacula Services for a backup job. Each
block represents in general a separate process (normally a daemon). In general, the Director oversees the flow of
information. It also maintains the Catalog.

Bacula Storage Management System

What Bacula is Not 15

Index Features

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Introduction Index Getting Started

Bacula Storage Management System

What Bacula is Not 16

http://www.bacula.org/

The Current State of Bacula
In other words, what is and what is not currently implemented and functional.

What is Implemented

Network backup/restore with centralized Director.•
Internal scheduler for automatic Job execution.•
Scheduling of multiple Jobs at the same time.•
You may run one Job at a time or multiple simultaneous Jobs.•
Job sequencing using priorities.•
Restore of one or more files selected interactively either for the current backup or a backup prior to a
specified time and date.

•

Restore of a complete system starting from bare metal. This is mostly automated for Linux systems and
partially automated for Solaris. See Disaster Recovery Using Bacula. This is also reported to work on
Win2K/XP systems.

•

Listing and Restoration of files using stand−alone bls and bextract tool programs. Among other things,
this permits extraction of files when Bacula and/or the catalog are not available. Note, the recommended
way to restore files is using the restore command in the Console. These programs are designed for use as
a last resort.

•

Ability to recreate the catalog database by scanning backup Volumes using the bscan program.•
Console interface to the Director allowing complete control. A shell, GNOME GUI and wxWidgets GUI
versions of the Console program are available. Note, the GNOME GUI program currently offers very
few additional features over the shell program.

•

Verification of files previously cataloged, permitting a Tripwire like capability (system break−in
detection).

•

CRAM−MD5 password authentication between each component (daemon).•
A comprehensive and extensible configuration file for each daemon.•
Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.•
Support for SQLite, PostgreSQL, and MySQL Catalog databases.•
User extensible queries to the SQLite, PostgreSQL and MySQL databases.•
Labeled Volumes, preventing accidental overwriting (at least by Bacula).•
Any number of Jobs and Clients can be backed up to a single Volume. That is, you can backup and
restore Linux, Unix, Sun, and Windows machines to the same Volume.

•

Multi−volume saves. When a Volume is full, Bacula automatically requests the next Volume and
continues the backup.

•

Pool and Volume library management providing Volume flexibility (e.g. monthly, weekly, daily Volume
sets, Volume sets segregated by Client, ...).

•

Machine independent Volume data format. Linux, Solaris, and Windows clients can all be backed up to
the same Volume if desired.

•

A flexible message handler including routing of messages from any daemon back to the Director and
automatic email reporting.

•

Multi−threaded implementation.•
Programmed to handle arbitrarily long filenames and messages.•
GZIP compression on a file by file basis done by the Client program if requested before network transit.•
Computation of MD5 or SHA1 signatures of the file data if requested.•
Saves and restores POSIX ACLs if enabled.•
Autochanger support using a simple shell interface that can interface to virtually any autoloader program.
A script for mtx is provided.

•

Support for autochanger barcodes −− automatic tape labeling from barcodes.•

The Current State of Bacula 17

Automatic support for multiple autochanger magazines either using barcodes or by reading the tapes.•
Raw device backup/restore. Restore must be to the same device.•
All Volume blocks (approx 64K bytes) contain a data checksum.•
Access control lists for Consoles that permit restricting user access to only their data.•
Data spooling to disk during backup with subsequent write to tape from the spooled disk files. This
prevents tape "shoe shine" during Incremental/Differential backups.

•

Support for save/restore of files larger than 2GB.•
Support for 64 bit machines, e.g. amd64.•
Ability to encrypt communications between daemons using stunnel.•

Advantages of Bacula Over Other Backup Programs

Since there is a client for each machine, you can backup and restore clients of any type ensuring that all
attributes of files are properly saved and restored.

•

It is also possible to backup clients without any client software by using NFS or Samba. However, if
possible, we recommend running a Client File daemon on each machine to be backed up.

•

Bacula handles multi−volume backups.•
A full comprehensive SQL standard database of all files backed up. This permits online viewing of files
saved on any particular Volume.

•

Automatic pruning of the database (removal of old records) thus simplifying database administration.•
Any SQL database engine can be used making Bacula very flexible.•
The modular but integrated design makes Bacula very scalable.•
Since Bacula uses client file servers, any database or other application can be properly shutdown by
Bacula using the native tools of the system, backed up, then restarted (all within a Bacula Job).

•

Bacula has a built−in Job scheduler.•
The Volume format is documented and there are simple C programs to read/write it.•
Bacula uses well defined (registered) TCP/IP ports −− no rpcs, no shared memory.•
Bacula installation and configuration is relatively simple compared to other comparable products.•
According to one user Bacula is as fast as the big major commercial application.•
According to another user Bacula is four times as fast as another commercial application, probably
because that application stores its catalog information in a large number of individual files rather than an
SQL database as Bacula does.

•

Current Implementation Restrictions

Typical of Microsoft, not all files can always be saved on WinNT, Win2K and WinXP when they are in
use by another program. Anyone knowing the magic incantations please step forward. The files that are
skipped seem to be in exclusive use by some other process, and don't appear to be too important.

•

Unicode filenames (e.g. Chinese) cannot be saved or restored. This appears to be a problem only on Mac
machines that are using remote mounted Windows volumes.

•

If you have over 4 billion file entries stored in your database, the database FileId is likely to overflow.
This is a monster database, but still possible. At some point, Bacula's FileId fields will be upgraded from
32 bits to 64 bits and this problem will go away. In the mean time, a good workaround is to use multiple
databases.

•

Files deleted after a Full save will be included in a restoration.•
Event handlers are not yet implemented (e.g. when Job terminates do this, ...)•
File System Modules (configurable routines for saving/restoring special files).•
Data encryption of the Volume contents.•
Bacula cannot backup or restore files from two or more different storage devices or different media
types.

•

Bacula Storage Management System

Advantages of Bacula Over Other Backup Programs 18

There is no concept of a Pool of backup devices (i.e. if device /dev/nst0 is busy, use /dev/nst1, ...).•

Design Limitations or Restrictions

Names (resource names, Volume names, and such) defined in Bacula configuration files are limited to a
fixed number of characters. Currently the limit is defined as 127 characters. Note, this does not apply to
filenames, which may be arbitrarily long.

•

Introduction Index Getting Started

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

The Current State of Bacula Index Quick Start Guide to Bacula

Bacula Storage Management System

Design Limitations or Restrictions 19

http://www.bacula.org/

Supported Systems and Hardware

System Requirements

Bacula has been compiled and run on Linux RedHat, FreeBSD, and Solaris systems.•
It requires GNU C++ version 2.95 or higher to compile. You can try with other compilers and older
versions, but you are on your own. We have successfully compiled and used Bacula on
RH8.0/RH9/RHEL 3.0 with GCC 3.2. Note, in general GNU C++ is a separate package (e.g. RPM) from
GNU C, so you need them both loaded. On RedHat systems, the C++ compiler is part of the gcc−c++
rpm package.

•

There are certain third party packages that Bacula needs. Except for MySQL and PostgreSQL, they can
all be found in the depkgs and depkgs1 releases.

•

If you want to build the Win32 binaries, you will need a Microsoft Visual C++ compiler (or Visual
Studio). Although all components build (console has some warnings), only the File daemon has been
tested.

•

Bacula requires a good implementation of pthreads to work. This is not the case on some of the BSD
systems.

•

The source code has been written with portability in mind and is mostly POSIX compatible. Thus porting
to any POSIX compatible operating system should be relatively easy.

•

The GNOME Console program is developed and tested under GNOME 2.x. It also runs under GNOME
1.4 but this version is deprecated and thus no longer maintained.

•

The wxWidgets Console program is developed and tested with the latest stable version of wxWidgets
(2.4.2). It works fine with the Windows and GTK+−1.x version of wxWidgets, and should also works on
other platforms supported by wxWidgets.

•

The Tray Monitor program is developed for GTK+−2.x. It needs Gnome >=2.2, KDE >=3.1 or any
window manager supporting the FreeDesktop system tray standard.

•

If you want to enable command line editing and history, you will need to have /usr/include/termcap.h and
either the termcap or the ncurses library loaded (libtermcap−devel or ncurses−devel).

•

Supported Operating Systems

Linux systems (built and tested on RedHat Enterprise Linux 3.0).•
If you have a recent Red Hat Linux system running the 2.4.x kernel and you have the directory /lib/tls
installed on your system (normally by default), bacula will NOT run. This is the new pthreads library and
it is defective. You must remove this directory prior to running Bacula, or you can simply change the
name to /lib/tls−broken) then you must reboot your machine (one of the few times Linux must be
rebooted). If you are not able to remove/rename /lib/tls, an alternative is to set the environment variable
"LD_ASSUME_KERNEL=2.4.19" prior to executing Bacula. For this option, you do not need to reboot,
and all programs other than Bacula will continue to use /lib/tls.

•

The feedback that we have for 2.6 kernels is that the same problem exists. However, on 2.6 kernels, we
would probably recommend using the environment variable override (LD_ASSUME_KERNEL=2.4.19)
rather than removing /lib/tls.

Most flavors of Linux (Gentoo, SuSE, Mandrake, Debian, ...).•
Solaris various versions.•
FreeBSD (tape driver supported in 1.30 −− please see some important considerations in the Tape Modes
on FreeBSD section of the Tape Testing chapter of this manual.)

•

Supported Systems and Hardware 20

http://www.wxwidgets.org/
http://www.freedesktop.org/Standards/systemtray-spec

Windows (Win98/Me, WinNT/2K/XP) Client (File daemon) binaries.•
MacOS X/Darwin (see http://fink.sourceforge.net/ for obtaining the packages)•
OpenBSD Client (File daemon).•
Irix Client (File daemon).•
Tru64•
Bacula is said to work on other systems (AIX, BSDI, HPUX, ...) but we do not have first hand
knowledge of these systems.

•

See the Porting Chapter of this manual for information on porting to other systems.•

Supported Tape Drives

Even if your drive is on the list below, please check the Tape Testing Chapter of this manual for procedures that
you can use to verify if your tape drive will work with Bacula. If your drive is in fixed block mode, it may appear
to work with Bacula until you attempt to do a restore and Bacula wants to position the tape. You can be sure only
by following the procedures suggested above and testing.

It is very difficult to supply a list of supported tape drives, or drives that are known to work with Bacula because
of limited feedback (so if you use Bacula on a different drive, please let us know). Based on user feedback, the
following drives are known to work with Bacula. A dash in a column means unknown:

OS Man. Media Model Capacity/th>

− ADIC DLT Adic Scalar 100 DLT 100GB

− ADIC DLT Adic Fastor 22 DLT −

− − DDS Compaq DDS 2,3,4 −

− Exabyte −
Exabyte drives less than 10
years old

−

− Exabyte − Exabyte VXA drives −

− HP Travan 4 Colorado T4000S −

− HP DLT HP DLT drives −

− HP LTO HP LTO Ultrium drives −

FreeBSD 4.10 RELEASE HP DAT HP StorageWorks DAT72i −

− Overland LTO LoaderXpress LTO −

− Overland − Neo2000 −

− OnStream − OnStream drives (see below) −

− Quantum DLT DLT−8000 40/80GB

Linux Seagate DDS−4 Scorpio 40 20/40GB

Bacula Storage Management System

Supported Tape Drives 21

http://fink.sourceforge.net/

FreeBSD 4.9 STABLE Seagate DDS−4 STA2401LW 20/40GB

FreeBSD 5.2.1 pthreads patched
RELEASE

Seagate AIT−1 STA1701W 35/70GB

Linux Sony DDS−2,3,4 − 4−40GB

Linux Tandberg − Tandbert MLR3 −

FreeBSD Tandberg − Tandberg SLR6 −

Solaris Tandberg − Tandberg SLR75 −

There is a list of supported autochangers models in the autochangers chapter of this document, where you will
find other tape drives that work with Bacula.

Unsupported Tape Drives

Previously OnStream IDE−SCSI tape drives did not work with Bacula. As of Bacula version 1.33 and the osst
kernel driver version 0.9.14 or later, they now work. Please see the testing chapter as you must set a fixed block
size.

QIC tapes are known to have a number of particularities (fixed block size, and one EOF rather than two to
terminate the tape). As a consequence, you will need to take a lot of care in configuring them to make them work
correctly with Bacula.

FreeBSD Users Be Aware!!!

Unless you have patched the pthreads library on most FreeBSD systems, you will lose data when Bacula spans
tapes. This is because the unpatched pthreads library fails to return a warning status to Bacula that the end of the
tape is near. Please see the Tape Testing Chapter of this manual for important information on how to configure
your tape drive for compatibility with Bacula.

Supported Autochangers

For information on supported autochangers, please see the Autochangers Known to Work with Bacula section of
the Autochangers chapter of this manual.

The Current State of Bacula Index Quick Start Guide to Bacula

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Unsupported Tape Drives 22

http://www.bacula.org/

Bacula 1.36 User's Guide

Supported Systems and Hardware Index Installing Bacula

Bacula Storage Management System

Unsupported Tape Drives 23

Getting Started with Bacula
If you are like me, you want to get Bacula running immediately to get a feel for it, then later you want to go back
and read about all the details. This chapter attempts to accomplish just that: get you going quickly without all the
details. If you want to skip the section on Pools, Volumes and Labels, you can always come back to it, but please
read to the end of this chapter, and in particular follow the instructions for testing your tape drive.

We assume that you have managed to build and install Bacula, if not, you might want to first look at the System
Requirements then at the Compiling and Installing Bacula chapter of this manual.

Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and labeling may be a bit
confusing at first. A Volume is a single physical tape (or possibly a single file) on which Bacula will write your
backup data. Pools group together Volumes so that a backup is not restricted to the length of a single Volume
(tape). Consequently, rather than explicitly naming Volumes in your Job, you specify a Pool, and Bacula will
select the next appendable Volume from the Pool and request you to mount it.

Although the basic Pool options are specified in the Director's Pool resource, the real Pool is maintained in the
Bacula Catalog. It contains information taken from the Pool resource (bacula−dir.conf) as well as information on
all the Volumes that have been added to the Pool. Adding Volumes to a Pool is usually done manually with the
Console program using the label command.

For each Volume, Bacula maintains a fair amount of catalog information such as the first write date/time, the last
write date/time, the number of files on the Volume, the number of bytes on the Volume, the number of Mounts,
etc.

Before Bacula will read or write a Volume, the physical Volume must have a Bacula software label so that
Bacula can be sure the correct Volume is mounted. This is usually done using the label command in the Console
program.

The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes, may seem
tedious at first, but in fact, they are quite simple to do, and they allow you to use multiple Volumes (rather than
being limited to the size of a single tape). Pools also give you significant flexibility in your backup process. For
example, you can have a "Daily" Pool of Volumes for Incremental backups and a "Weekly" Pool of Volumes for
Full backups. By specifying the appropriate Pool in the daily and weekly backup Jobs, you thereby insure that no
daily Job ever writes to a Volume in the Weekly Pool and vice versa, and Bacula will tell you what tape is
needed and when.

For more on Pools, see the Pool Resource section of the Director Configuration chapter, or simply read on, and
we will come back to this subject later.

Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make, and a make install, if this is the first time
you are running Bacula, you must create valid configuration files for the Director, the File daemon, the Storage
daemon, and the Console programs. If you have followed our recommendations, default configuration files as
well as the daemon binaries will be located in your installation directory. In any case, the binaries are found in
the directory you specified on the −−sbindir option to the ./configure command, and the configuration files are

Getting Started with Bacula 24

found in the directory you specified on the −−sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in modifying the default configuration files
to suit your environment. This may entail starting and stopping Bacula a number of times until you get
everything right. Please do not despair. Once you have created your configuration files, you will rarely need to
change them nor will you stop and start Bacula very often. Most of the work will simply be in changing the tape
when it is full.

Configuring the Console Program

The Console program is used by the administrator to interact with the Director and to manually start/stop Jobs or
to obtain Job status information.

The Console configuration file is found in the directory specified on the −−sysconfdir option that you specified
on the ./configure command and by default is named console.conf.

If you choose to build the GNOME console with the −−enable−gnome option, you also find a default
configuration file for it, named gnome−console.conf.

The same applies to the wxWidgets console, which is build with the −−enable−wx−console option, and the name
of the default configuration file is, in this case, wx−console.conf.

Normally, for first time users, no change is needed to these files. Reasonable defaults are set.

Configuring the Monitor Program

The Monitor program is typically an icon in the system tray. However, once the icon is expanded into a full
window, the administrator or user can obtain status information about the Director or the backup status on the
local workstation or any other Bacula daemon that is configured.

Bacula Storage Management System

Configuring the Console Program 25

The image shows a tray−monitor configured for three daemons. By clicking on the radio buttons in the upper left
corner of the image, you can see the status for each of the daemons. The image shows the status for the Storage
daemon (MainSD) that is currently selected.

The Monitor configuration file is found in the directory specified on the −−sysconfdir option that you specified
on the ./configure command and by default is named tray−monitor.conf. Normally, for first time users, you just
need to change the permission of this file to allow non−root users to run the Monitor, as this application must run
as the same user as the graphical environment (don't forget allow non−root users to execute
bacula−tray−monitor). This is not a security problem as long as you use the default settings.

Bacula Storage Management System

Configuring the Console Program 26

Configuring the File daemon

The File daemon is a program that runs on each (Client) machine. At the request of the Director, finds the files to
be backed up and sends them (their data) to the Storage daemon.

The File daemon configuration file is found in the directory specified on the −−sysconfdir option that you
specified on the ./configure command. By default, the File daemon's configuration file is named bacula−fd.conf.
Normally, for first time users, no change is needed to this file. Reasonable defaults are set. However, if you are
going to back up more than one machine, you will need to install the File daemon with a unique configuration
file on each machine to be backed up. The information about each File daemon must appear in the Director's
configuration file.

Configuring the Director

The Director is the central control program for all the other daemons. It schedules and monitors all jobs to be
backed up.

The Director configuration file is found in the directory specified on the −−sysconfdir option that you specified
on the ./configure command. Normally the Director's configuration file is named bacula−dir.conf.

In general, the only change you must make is modify the FileSet resource so that the Include configuration
directive contains at least one line with a valid name of a directory (or file) to be saved.

If you do not have a DLT tape drive, you will probably want to edit the Storage resource to contain names that
are more representative of your actual storage device. You can always use the existing names as you are free to
arbitrarily assign them, but they must agree with the corresponding names in the Storage daemon's configuration
file.

You may also want to change the email address for notification from the default root to your email address.

Finally, if you have multiple systems to be backed up, you will need a separate File daemon or Client
specification for each system, specifying its name, address, and password. We have found that giving your
daemons the same name as your system but post fixed with −fd helps a lot in debugging. That is, if your system
name is foobaz, you would give the File daemon the name foobaz−fd. For the Director, you might use
foobaz−dir, and for the storage daemon, you might use foobaz−sd.

Configuring the Storage daemon

The Storage daemon is responsible, at the Director's request, for accepting data from a File daemon and placing it
on Storage media, or in the case of a restore request, to find the data and send it to the File daemon.

The Storage daemon's configuration file is found in the directory specified on the −−sysconfdir option that you
specified on the ./configure command. By default, the Storage daemon's file is named bacula−sd.conf. Edit this
file to contain the correct Archive device names for any tape devices that you have. If the configuration process
properly detected your system, they will already be correctly set. These Storage resource name and Media Type
must be the same as the corresponding ones in the Director's configuration file bacula−dir.conf. If you want to
backup to a file instead of a tape, the Archive device must point to a directory in which the Volumes will be
created as files when you label the Volume.

Bacula Storage Management System

Configuring the File daemon 27

Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon with the −t
option. The daemon will process the configuration file and print any error messages then terminate. For example,
assuming you have installed your binaries and configuration files in the same directory.

cd <installation−directory>
./bacula−dir −t −c bacula−dir.conf
./bacula−fd −t −c bacula−fd.conf
./bacula−sd −t −c bacula−sd.conf
./bconsole −t −c bconsole.conf
./gnome−console −t −c gnome−console.conf
./wx−console −t −c wx−console.conf
su <normal user> −c "./bacula−tray−monitor −t −c tray−monitor.conf"

will test the configuration files of each of the main programs. If the configuration file is OK, the program will
terminate without printing anything. Please note that, depending on the configure options you choose, some, or
even all, of the three last commands will not be available on your system. If you have installed the binaries in
traditional Unix locations rather than a single file, you will need to modify the above commands appropriately
(no ./ in front of the command name, and a path in front of the conf file name).

Testing Bacula Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn't work with your tape drive, please read the
btape −− Testing Your Tape Drive chapter of this manual. If you have a modern standard SCSI tape drive on a
Linux or Solaris, most likely it will work, but better test than be sorry. For FreeBSD (and probably other xBSD
flavors), reading the above mentioned tape testing chapter is a must. Also, for FreeBSD, please see The FreeBSD
Diary for a detailed description on how to make Bacula work on your system. In addition, users of FreeBSD prior
to 4.9−STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape devices, please see the file
platforms/freebsd/pthreads−fix.txt in the main Bacula directory concerning important information concerning
compatibility of Bacula and your system.

Get Rid of the /lib/tls Directory

The new pthreads library /lib/tls installed by default on recent Red Hat systems running kernel 2.4.x is defective.
You must remove it or rename it then reboot your system before running Bacula otherwise after a week or so of
running, Bacula will either block for long periods or deadlock entirely. The feedback that we have concerning 2.6
kernels is the same. However, on 2.6 systems, you may want to use the loader environment variable override
rather than removing /lib/tls. Please see Supported Operating Systems for more information on this problem.

Running Bacula

Probably the most important part of running Bacula is being able to restore files. If you haven't tried recovering
files at least once, when you actually have to do it, you will be under a lot more pressure, and prone to make
errors, than if you had already tried it once.

To get a good idea how to use Bacula in a short time, we strongly recommend that you follow the example in the
Running Bacula Chapter of this manual where you will get detailed instructions on how to run Bacula.

Bacula Storage Management System

Testing your Configuration Files 28

http://www.freebsddiary.org/bacula.php
http://www.freebsddiary.org/bacula.php

Log Rotation

If you use the default bacula−dir.conf or some variation of it, you will note that it logs all the Bacula output to a
file. To avoid that this file grows without limit, we recommend that you copy the file logrotate from the
scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log file to be rotated once a month and kept for a
maximum of 5 months. You may want to edit this file to change the default log rotation preferences.

Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than simply a program to restore lost or damaged
files, you will want to read the Disaster Recovery Using Bacula Chapter of this manual.

In any case, you are strongly urged to carefully test restoring some files that you have saved rather than wait until
disaster strikes. This way, you will be prepared.

Supported Systems and Hardware Index Installing Bacula

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Getting Started Index Running Bacula

Bacula Storage Management System

Log Rotation 29

http://www.bacula.org/

Installing Bacula

General

In general, you will need the Bacula source release, and if you want to run a Windows client, you will need the
Bacula Windows binary release. However, Bacula needs certain third party packages (such as SQLite, MySQL
to build properly depending on the options you specify. To simplify your task, we have combined a number of
these packages into two depkgs releases (Dependency Packages). This can vastly simplify your life by providing
you with all the necessary packages rather than requiring you to find them on the Web, load them, and install
them.

Upgrading Bacula

If you are upgrading from one Bacula version to another, you should first carefully read the ReleaseNotes of all
versions between your current version and the version to which you are upgrading. If the Bacula catalog database
has been upgraded, you will either need to reinitialize your database starting from scratch, or save an ASCII copy
of your database, then proceed to upgrade it. If there are several database upgrades between your version and the
version to which you are upgradding, you will need to apply each database upgrade script. For your convenience,
you can find all the old upgrade scripts in the upgradedb directory of the source code. You will need to edit the
scripts to correspond to your system configuration. The final upgrade script, if any, will be in the src/cats
directory as described in the ReleaseNotes.

If you are upgrading from one major version to another, you will need to replace all your components at the same
time as generally the inter−daemon protocol will change. However, within any particular release (e.g. version
1.32.x) unless there is an oversight or bug, the daemon protocol will not change. If this is confusing, simply read
the ReleaseNotes very carefully as they will note if all daemons must be upgraded at the same time.

Dependency Packages

As discussed above, we have combined a number of third party packages that Bacula might need into the depkgs
and depkgs1 releases. You can, of course, get the latest packages from the original authors. The locations of
where we obtained the packages are in the README file in each package. However, be aware that the packages
in the depkgs files have been tested by us for compatibility with Bacula.

Typically, a dependency package will be named depkgs−ddMMMyy.tar.gz and depkgs1−ddMMyy.tar.gz
where dd is the day we release it, MMM is the abbreviated month (e.g. Jan), and yy is the year. An actual
example is: depkgs−07Apr02.tar.gz. To install and build this package (if needed), you do the following:

Create a bacula directory, into which you will place both the Bacula source as well as the dependency
package.

1.

Detar the depkg into the bacula directory.2.
cd bacula/depkgs3.
make4.

Although the exact composition of the dependency packages may change from time to time, the current makeup
is the following:

3rd Party Package depkgs depkgs1 depkgs−win32

Installing Bacula 30

SQLite X − −

mtx X − −

readline − X −

pthreads − − X

zlib − − X

wxWidgits − − X

Note, some of these packages are quite large, so that building them can be a bit time consuming. The above
instructions will build all the packages contained in the directory. However, when building Bacula, it will take
only those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs
make sqlite

will configure and build only the SQLite package.

You should build the packages that you will require in depkgs and/or depkgs1 prior to configuring and building
Bacula, since Bacula will need them during the build process.

Even if you do not use SQLite, you might find it worthwhile to build mtx because the tapeinfo program that
comes with it can often provide you with valuable information about your SCSI tape drive (e.g. compression,
min/max block sizes, ...).

The depkgs−win32 package contains the source code for the pthreads and zlib libraries used by the native Win32
client program. It will only be needed if you intend to build the Win32 client from source.

Supported Operating Systems

Please see the Supported Operating Systems section of the QuickStart chapter of this manual.

Building Bacula from Source

The basic installation is rather simple.

Install and build any depkgs as noted above.1.
Configure and install MySQL or PostgreSQL (if desired). Installing and Configuring MySQL Phase I or
Installing and Configuring PostgreSQL Phase I. If you are installing from rpms, and are using MySQL,
please be sure to install mysql−devel, so that the MySQL header files are available while compiling
Bacula. In addition, the MySQL client library mysqlclient requires the gzip compression library libz.a or

2.

Bacula Storage Management System

Supported Operating Systems 31

libz.so. If you are using rpm packages, these libraries are in the libz−devel package. On Debian systems,
you will need to load the zlib1g−dev package. If you are not using rpms or debs, you will need to find
the appropriate package for your system.
Note, if you already have a running MySQL or PostgreSQL on your system, you can skip this phase
provided that you have built the thread safe libraries. And you have already installed the additional rpms
noted above.
As an alternative to MySQL and PostgreSQL, configure and install SQLite, which is part of the depkgs.
Installing and Configuring SQLite.

3.

Detar the Bacula source code preferably into the bacula directory discussed above.4.
cd to the directory containing the source code.5.
./configure (with appropriate options as described below)6.
Check the output of ./configure very carefully, especially the Install binaries and Install config files
directories. If they are not correct, please rerun ./configure until they are. The output from ./configure is
stored in config.out and can be re−displayed at any time without rerunning the ./configure by doing cat
config.out.

7.

If after running ./configure once, you decide to change options and re−run it, that is perfectly fine, but
before re−running it, you should run:

8.

 make distclean

so that you are sure to start from scratch and not have a mixture of the two options. This is because
./configure caches much of the information. The make distclean is also critical if you move the source
file from one machine to another. If the make distclean fails, just ignore it and continue on.
make9.

If you get errors while linking in the Storage daemon directory (src/stored), it is probably because you
have not loaded the static libraries on your system. I noticed this problem on a Solaris system. To correct
it, make sure that you have not added −−enable−static−tools to the ./configure command.

make install10.
If you are new to Bacula, we strongly recommend that you skip the next step and use the default
configuration files, then run the example program in the next chapter, then come back and modify your
configuration files to suit your particular needs.

11.

Customize the configuration files for each of the three daemons (Directory, File, Storage) and for the
Console program. For the details of how to do this, please see Setting Up Bacula Configuration Files in
the Configuration chapter of this manual. We recommend that you start by modifying the default
configuration files supplied, making the minimum changes necessary. Complete customization can be
done after you have Bacula up and running. Please take care when modifying passwords, which were
randomly generated, and the Names as the passwords and names must agree between the configuration
files for security reasons.

12.

Create the Bacula MySQL database and tables (if using MySQL) Installing and Configuring MySQL
Phase II or create the Bacula PostgreSQL database and tables Installing and Configuring PostgreSQL
Phase II or alternatively if you are using SQLite Installing and Configuring SQLite Phase II.

13.

Start Bacula (./bacula start) Note. the next chapter shows you how to do this in detail.14.
Interface with Bacula using the Console program15.
For the previous two items, please follow the instructions in the Running Bacula chapter of this manual,
where you will run a simple backup and do a restore. Do this before you make heavy modifications to the
configuration files so that you are sure that Bacula works and are familiar with it. After that changing the
conf files will be easier.

16.

If after installing Bacula, you decide to "move it", that is to install it in a different set of directories,17.

Bacula Storage Management System

Supported Operating Systems 32

proceed as follows:

 make uninstall
 make distclean
 ./configure (your−new−options)
 make
 make install

If all goes well, the ./configure will correctly determine which operating system you are running and configure
the source code appropriately. Currently, FreeBSD, Linux (RedHat), and Solaris are supported. MacOS X 10.3 is
reported to work with the Client only as long as readline support is disabled.

If you install Bacula on more than one system, and they are identical, you can simply transfer the source tree to
that other system and do a "make install". However, if there are differences in the libraries or OS versions, or you
wish to install on a different OS, you should start from the original compress tar file. If you do transfer the source
tree, and you have previously done a ./configure command, you MUST do:

make distclean

prior to doing your new ./configure. This is because the GNU autoconf tools cache the configuration, and if you
re−use a configuration for a Linux machine on a Solaris, you can be sure your build will fail. To avoid this, as
mentioned above, either start from the tar file, or do a "make distclean".

In general, you will probably want to supply a more complicated configure statement to ensure that the modules
you want are built and that everything is placed into the correct directories.

For example, on RedHat, one could use the following:

CFLAGS="−g −Wall" \
 ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/bin/working \
 −−with−dump−email=$USER

Note, the advantage of using the above configuration to start is that everything will be put into a single directory,
which you can later delete once you have run the examples in the next chapter and learned how Bacula works. In
addition, the above can be installed and run as non−root.

For the developer's convenience, I have added a defaultconfig script to the examples directory. This script
contains the statements that you would normally use, and each developer/user may modify them to suit his needs.
You should find additional useful examples in this directory as well.

The −−enable−conio or −−enable−readline options are useful because they provide a command line history and
editing capability for the Console program. If you have included either option in the build, either the termcap or
the ncurses package will be needed to link. On some systems, such as SuSE, the termcap library is not in the
standard library directory. As a consequence, the option may be disabled or you may get an error message such
as:

/usr/lib/gcc−lib/i586−suse−linux/3.3.1/.../ld:

Bacula Storage Management System

Supported Operating Systems 33

cannot find −ltermcap
collect2: ld returned 1 exit status

while building the Bacula Console. In that case, you will need to set the LDFLAGS environment variable prior
to building.

export LDFLAGS="−L/usr/lib/termcap"

The same library requirements apply if you wish to use the readline subroutines for command line editing and
history.

Please be aware that on some systems such as Mandrake, readline tends to gobble up prompts, which makes it
totally useless. If this happens to you, use the disable option, or if you are using version 1.33 and above try using
−−enable−conio to use a built−in readline replacement. You will still need the either termcap or ncurses library,
but it is unlikely that the conio package will gobble up prompts.

readline is no longer supported after version 1.34. The code is still available and if users submit patches for it, I
will be happy to apply them. However, due to the fact that each version of readline seems to be incompatible with
previous versions, and that there are significant differences between systems, I can no longer afford to support it.

What Database to Use?

Before building Bacula you need to decide if you want to use SQLite, MySQL, or PostgreSQL. If you are not
already running MySQL or PostgreSQL, we recommend that you start by using SQLite. This will greatly
simplify the setup for you because SQLite is compiled into Bacula an requires no administration. It performs well
and is suitable for small to medium sized installations (maximum 10−20 machines).

If you wish to use MySQL as the Bacula catalog, please see the Installing and Configuring MySQL chapter of
this manual. You will need to install MySQL prior to continuing with the configuration of Bacula. MySQL is a
high quality database that is very efficient and is suitable for any sized installation. It is slightly more
complicated than SQLite to setup and administer because it has a number of sophisticated features such as
userids and passwords. It runs as a separate process, is truly professional and can manage a database of any size.

If you wish to use PostgreSQL as the Bacula catalog, please see the Installing and Configuring PostgreSQL
chapter of this manual. You will need to install PostgreSQL prior to continuing with the configuration of Bacula.
PostgreSQL is very similar to MySQL, though it tends to be slightly more SQL92 compliant and has many more
advanced features such as transactions, stored procedures, and the such. It requires a certain knowledge to install
and maintain. There are some important performance problems with PostgreSQL in Bacula versions prior to
1.35.5.

If you wish to use SQLite as the Bacula catalog, please see Installing and Configuring SQLite chapter of this
manual.

Quick Start

There are a good number of options and important considerations given below that you can skip for the moment
if you have not had any problems building Bacula with a simplified configuration as shown above.

If you want to dive right into it, we recommend you skip to the next chapter, and run the example program. It will
teach you a lot about Bacula and as an example can be installed into a single directory (for easy removal) and run

Bacula Storage Management System

What Database to Use? 34

as non−root. If you have any problems or when you want to do a real installation, come back to this chapter and
read the details presented below.

Configure Options

The following command line options are available for configure to customize your installation.

−−sysbindir=<binary−path>
Defines where the Bacula binary (executable) files will be placed during a make install command.

−−sysconfdir=<config−path>
Defines where the Bacula configuration files should be placed during a make install command.

−−enable−smartalloc
This enables the inclusion of the Smartalloc orphaned buffer detection code. This option is highly
recommended. Because we never build without this option, you may experience problems if it is not
enabled. In this case, simply re−enable the option. We strongly recommend keeping this option enabled
as it helps detect memory leaks. This configuration parameter is used while building Bacula

−−enable−gnome
If you have GNOME installed on your computer and you want to use the GNOME GUI Console
interface to Bacula, you must specify this option. Doing so will build everything in the
src/gnome−console directory.

−−enable−wx−console
If you have wxWidgets installed on your computer and you want to use the wxWidgets GUI Console
interface to Bacula, you must specify this option. Doing so will build everything in the src/wx−console
directory. This could also be useful to users who want a GUI Console and don't want to install Gnome, as
wxWidgets can work with GTK+, Motif or even X11 libraries.

−−enable−tray−monitor
If you have GTK installed on your computer, you run an graphical environment or a window manager
compatible with the FreeDesktop system tray standard (like KDE and GNOME) and you want to use a
GUI to monitor Bacula daemons, you must specify this option. Doing so will build everything in the
src/tray−monitor directory.

−−enable−static−tools
This option causes the linker to link the Storage daemon utility tools (bls, bextract, and bscan)
statically. This permits using them without having the shared libraries loaded. If you have problems
linking in the src/stored directory, make sure you have not enabled this option, or explicitly disable
static linking by adding −−disable−static−tools.

−−enable−static−fd
This option causes the make process to build a static−bacula−fd in addition to the standard File daemon.
This static version will include statically linked libraries and is required for the Bare Metal recovery. This
option is largely superseded by using make static−bacula−fd from with in the src/filed directory. Also,
the −−enable−client−only option described below is useful for just building a client so that all the other
parts of the program are not compiled.

−−enable−static−sd
This option causes the make process to build a static−bacula−sd in addition to the standard Storage
daemon. This static version will include statically linked libraries and could be useful during a Bare
Metal recovery.

−−enable−static−dir
This option causes the make process to build a static−bacula−dir in addition to the standard Director.
This static version will include statically linked libraries and could be useful during a Bare Metal
recovery.

−−enable−static−cons

Bacula Storage Management System

Configure Options 35

This option causes the make process to build a static−console and a static−gnome−console in addition
to the standard console. This static version will include statically linked libraries and could be useful
during a Bare Metal recovery.

−−enable−client−only
This option causes the make process to build only the File daemon and the libraries that it needs. None of
the other daemons, storage tools, nor the console will be built. Likewise a make install will then only
install the File daemon. To cause all daemons to be built, you will need to do a configuration without this
option. This option greatly facilitates building a Client on a client only machine.

−−enable−largefile
This option (default) causes Bacula to be built with 64 bit file address support if it is available on your
system. This permits Bacula to read and write files greater than 2 GBytes in size. You may disable this
feature and revert to 32 bit file addresses by using −−disable−largefile.

−−with−sqlite=<sqlite−path>
This enables use of the SQLite database. The sqlite−path is not normally specified as Bacula looks for
the necessary components in a standard location (depkgs/sqlite). See Installing and Configuring SQLite
chapter of this manual for more details.

−−with−mysql=<mysql−path>
This enables building of the Catalog services for Bacula. It assumes that MySQL is running on your
system, and expects it to be installed in the mysql−path that you specify. If this option is not present, the
build will automatically include the internal Bacula database code. We recommend that you use this
option if possible. If you do use this option, please proceed to installing MySQL in the Installing and
Configuring MySQL chapter before proceeding with the configuration.

−−with−postgresql=<path>
This provides an explicit path to the PostgreSQL libraries if Bacula cannot find it by default.

−−enable−conio
Tells Bacula to enable building the small, light weight readline replacement routine. It is generally much
easier to configure than readline, although, like readline, it needs either the termcap or ncurses library.

−−with−readline=<readline−path>
Tells Bacula where readline is installed. Normally, Bacula will find readline if it is in a standard library.
If it is not found and no −−with−readline is specified, readline will be disabled. This option affects the
Bacula build. Readline provides the Console program with a command line history and editing capability
and is no longer supports, so you are on your own if you have problems.

−−enable−readline
Tells Bacula to enable readline support. It is normally disabled due to the large number of configuration
problems and the fact that the package seems to change in incompatible ways from version to version.

−−with−tcp−wrappers=<path>
This specifies that you want TCP wrappers (man hosts_access(5)) compiled in. The path is optional since
Bacula will normally find the libraries in the standard locations. This option affects the Bacula build. In
specifying your restrictions in the /etc/hosts.allow or /etc/hosts.deny files, do not use the twist option
(hosts_options(5)) or the Bacula process will be terminated.
For more information on configuring and testing TCP wrappers, please see the Configuring and Testing
TCP Wrappers section in the Security Capter.

−−with−working−dir=<working−directory−path>
This option is mandatory and specifies a directory into which Bacula may safely place files that will
remain between Bacula executions. For example, if the internal database is used, Bacula will keep those
files in this directory. This option is only used to modify the daemon configuration files. You may also
accomplish the same thing by directly editing them later. The working directory is not automatically
created by the install process, so you must ensure that it exists before using Bacula for the first time.

−−with−base−port=<port=number>

Bacula Storage Management System

Configure Options 36

In order to run, Bacula needs three TCP/IP ports (one for the Bacula Console, one for the Storage
daemon, and one for the File daemon). The −−with−baseport option will automatically assign three
ports beginning at the base port address specified. You may also change the port number in the resulting
configuration files. However, you need to take care that the numbers correspond correctly in each of the
three daemon configuration files. The default base port is 9101, which assigns ports 9101 through 9103.
These ports (9101, 9102, and 9103) have been officially assigned to Bacula by IANA. This option is only
used to modify the daemon configuration files. You may also accomplish the same thing by directly
editing them later.

−−with−dump−email=<email−address>
This option specifies the email address where any core dumps should be set. This option is normally only
used by developers.

−−with−pid−dir=<PATH>
This specifies where Bacula should place the process id file during execution. The default is: /var/run.
This directory is not created by the install process, so you must ensure that it exists before using Bacula
the first time.

−−with−subsys−dir=<PATH>
This specifies where Bacula should place the subsystem lock file during execution. The default is
/var/run/subsys. Please make sure that you do not specify the same directory for this directory and for
the sbindir directory. This directory is used only within the autostart scripts. The subsys directory is not
created by the Bacula install, so you must be sure to create it before using Bacula.

−−with−dir−password=<Password>
This option allows you to specify the password used to access the Directory (normally from the Console
program). If it is not specified, configure will automatically create a random password.

−−with−fd−password=<Password>
This option allows you to specify the password used to access the File daemon (normally called from the
Director). If it is not specified, configure will automatically create a random password.

−−with−sd−password=<Password>
This option allows you to specify the password used to access the Directory (normally called from the
Director). If it is not specified, configure will automatically create a random password.

−−with−dir−user=<User>
This option allows you to specify the Userid used to run the Director. The Director must be started as
root, but doesn't need to run as root, and after doing preliminary initializations, it can "drop" to the
UserId specified on this option.

−−with−dir−group=<Group>
This option allows you to specify the GroupId used to run the Director. The Director must be started as
root, but doesn't need to run as root, and after doing preliminary initializations, it can "drop" to the
GroupId specified on this option.

−−with−sd−user=<User>
This option allows you to specify the Userid used to run the Storage daemon. The Storage daemon must
be started as root, but doesn't need to run as root, and after doing preliminary initializations, it can "drop"
to the UserId specified on this option. If you use this option, you will need to take care that the Storage
daemon has access to all the devices (tape drives, ...) that it needs.

−−with−sd−group=<Group>
This option allows you to specify the GroupId used to run the Storage daemon. The Storage daemon
must be started as root, but doesn't need to run as root, and after doing preliminary initializations, it can
"drop" to the GroupId specified on this option.

−−with−fd−user=<User>
This option allows you to specify the Userid used to run the File daemon. The File daemon must be
started as root, and in most cases, it needs to run as root, so this option is used only in very special cases,
after doing preliminary initializations, it can "drop" to the UserId specified on this option.

−−with−fd−group=<Group>

Bacula Storage Management System

Configure Options 37

This option allows you to specify the GroupId used to run the File daemon. The File daemon must be
started as root, and in most cases, it must be run as root, however, after doing preliminary initializations,
it can "drop" to the GroupId specified on this option.

Note, many other options are presented when you do a ./configure −−help, but they are not implemented.

Recommended Options for most Systems

For most systems, we recommend starting with the following options:

./configure \
 −−enable−smartalloc \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/working

If you want to install Bacula in an installation directory rather than run it out of the build directory (as developers
will do most of the time), you should also include the −−sbindir and −−sysconfdir options with appropriate paths.
Neither are necessary if you do not use "make install" as is the case for most development work. The install
process will create the sbindir and sysconfdir if they do not exist, but it will not automatically create the pid−dir,
subsys−dir, or working−dir, so you must ensure that they exist before running Bacula for the first time. See
below for an example of how Kern does it.

RedHat

Using SQLite:

CFLAGS="−g −Wall" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−smartalloc \
 −−with−sqlite=$HOME/bacula/depkgs/sqlite \
 −−with−working−dir=$HOME/bacula/working \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−enable−gnome \
 −−enable−conio

or

CFLAGS="−g −Wall" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−smartalloc \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/working
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working
 −−enable−gnome \
 −−enable−conio

Bacula Storage Management System

Recommended Options for most Systems 38

or finally, a completely traditional RedHat Linux install:

CFLAGS="−g −Wall" ./configure \
 −−prefix=/usr \
 −−sbindir=/usr/sbin \
 −−sysconfdir=/etc/bacula \
 −−with−scriptdir=/etc/bacula \
 −−enable−smartalloc \
 −−enable−gnome \
 −−with−mysql \
 −−with−working−dir=/var/bacula \
 −−with−pid−dir=/var/run \
 −−with−subsys−dir=/var/lock/subsys \
 −−enable−conio

Note, Bacula assumes that /var/bacula, /var/run, and /var/loc/subsys exist so it will not automatically create them
during the install process.

Solaris

#!/bin/sh
CFLAGS="−g" ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−with−mysql=$HOME/mysql \
 −−enable−smartalloc \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−working−dir=$HOME/bacula/working

As mentioned above, the install process will create the sbindir and sysconfdir if they do not exist, but it will not
automatically create the pid−dir, subsys−dir, or working−dir, so you must ensure that they exist before running
Bacula for the first

FreeBSD

Please see: The FreeBSD Diary for a detailed description on how to make Bacula work on your system. In
addition, users of FreeBSD prior to 4.9−STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape
devices, please see the Tape Testing Chapter of this manual for important information on how to configure your
tape drive for compatibility with Bacula.

If you are using Bacula with MySQL, you should take care to compile MySQL with FreeBSD native threads
rather than LinuxThreads, since Bacula is normal built with FreeBSD native threads rather than LinuxTreads.
Mixing the two will probably not work.

Win32

To install the binary Win32 version of the File daemon please see the Win32 Installation Chapter in this
document.

Bacula Storage Management System

Solaris 39

http://www.freebsddiary.org/bacula.php

Windows Systems with CYGWIN Installed

As of version 1.34, Bacula no longer uses CYGWIN for the Win32 File daemon. However, it is still built under a
CYGWIN build environment −− though you can probably do it with VC Studio only. If you wish to build the
Win32 File daemon from the source, you will need Microsoft C++ version 6.0 or greater. In Bacula prior to
version 1.33, CYGWIN was used. Details for building it are in the README file of the src/win32 directory.

Note, although most parts of Bacula build on Windows systems, the only part that we have tested and used is the
File daemon.

Finally, you should follow the installation instructions in the Win32 Installation section of this document,
skipping the part that describes unZipping the binary release.

Kern's Configure Script

The script that I use for building on my "production" Linux machines is:

#!/bin/sh
This is Kern's configure script for Bacula
CFLAGS="−g −Wall" \
 ./configure \
 −−sbindir=$HOME/bacula/bin \
 −−sysconfdir=$HOME/bacula/bin \
 −−enable−smartalloc \
 −−enable−gnome \
 −−with−pid−dir=$HOME/bacula/bin/working \
 −−with−subsys−dir=$HOME/bacula/bin/working \
 −−with−mysql=$HOME/mysql \
 −−with−working−dir=$HOME/bacula/bin/working \
 −−with−dump−email=$USER \
 −−with−smtp−host=mail.your−site.com \
 −−with−baseport=9101
exit 0

Note that I define the base port as 9101, which means that Bacula will use port 9101 for the Director console,
port 9102 for the File daemons, and port 9103 for the Storage daemons. These ports should be available on all
systems because they have been officially assigned to Bacula by IANA (Internet Assigned Numbers Authority).
We strongly recommend that you use only these ports to prevent any conflicts with other programs. This is in fact
the default if you do not specify a −−with−baseport option.

You may also want to put the following entries in your /etc/services file as it will make viewing the connections
made by Bacula easier to recognize (i.e. netstat −a):

bacula−dir 9101/tcp
bacula−fd 9102/tcp
bacula−sd 9103/tcp

Installing Bacula

Before setting up your configuration files, you will want to install Bacula in its final location. Simply enter:

make install

Bacula Storage Management System

Kern's Configure Script 40

If you have previously installed Bacula, the old binaries will be overwritten, but the old configuration files will
remain unchanged, and the "new" configuration files will be appended with a .new. Generally if you have
previously installed and run Bacula you will want to discard or ignore the configuration files with the appended
.new.

Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you wish to back up another machine, you
must have a copy of the File daemon for that machine. If the machine and the Operating System are identical,
you can simply copy the Bacula File daemon binary file bacula−fd as well as its configuration file
bacula−fd.conf then modify the name and password in the conf file to be unique. Be sure to make corresponding
additions to the Director's configuration file (bacula−dir.conf).

If the architecture or the O/S level are different, you will need to build a File daemon on the Client machine. To
do so, you can use the same ./configure command as you did for your main program, starting either from a fresh
copy of the source tree, or using make distclean before the ./configure.

Since the File daemon does not access the Catalog database, you can remove the −−with−mysql or
−−with−sqlite options, then add −−enable−client−only. This will compile only the necessary libraries and the
client programs and thus avoids the necessity of installing one or another of those database programs to build the
File daemon. With the above option, you simply enter make and just the client will be built.

Auto Starting the Daemons

If you wish the daemons to be automatically started and stopped when your system is booted (a good idea), one
more step is necessary. First, the ./configure process must recognize your system −− that is it must be a supported
platform and not unknown, then you must install the platform dependent files by doing:

(become root)
make install−autostart

Please note, that the auto−start feature is implemented only on systems that we officially support (currently,
FreeBSD, RedHat Linux, and Solaris), and has only been fully tested on RedHat Linux.

The make install−autostart will cause the appropriate startup scripts to be installed with the necessary symbolic
links. On RedHat Linux systems, these scripts reside in /etc/rc.d/init.d/bacula−dir /etc/rc.d/init.d/bacula−fd,
and /etc/rc.d/init.d/bacula−sd. However the exact location depends on what operating system you are using.

If you only wish to install the File daemon, you may do so with:

make install−autostart−fd

Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or 3, which Kern uses as temporary
files), enter:

Bacula Storage Management System

Building a File Daemon or Client 41

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level directory to prepare for distribution of
the source. To recover from this state, you must redo the ./configure in the top level directory, since all the
Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory, then simply do a make. In most cases,
the make will rebuild the Makefile from the new Makefile.in. In some case, you may need to issue the make a
second time. In extreme cases, cd to the top level directory and enter: make Makefiles.

To add dependencies:

make depend

The make depend appends the header file dependencies for each of the object files to Makefile and Makefile.in.
This command should be done in each directory where you change the dependencies. Normally, it only needs to
be run when you add or delete source or header files. make depend is normally automatically invoked during the
configuration process.

To install:

make install

This not normally done if you are developing Bacula, but is used if you are going to run it to backup your system.

After doing a make install the following files will be installed on your system (more or less). The exact files and
location (directory) for each file depends on your ./configure command (e.g. gnome−console and
gnome−console.conf are not installed if you do not configure GNOME. Also, if you are using SQLite instead of
mysql, some of the files will be different).

bacula
bacula−dir
bacula−dir.conf
bacula−fd
bacula−fd.conf
bacula−sd
bacula−sd.conf
bacula−tray−monitor
tray−monitor.conf
bextract
bls
bscan
btape
btraceback
btraceback.gdb
bconsole
bconsole.conf
create_mysql_database
dbcheck
delete_catalog_backup
drop_bacula_tables
drop_mysql_tables

Bacula Storage Management System

Building a File Daemon or Client 42

fd
gnome−console
gnome−console.conf
make_bacula_tables
make_catalog_backup
make_mysql_tables
mtx−changer
query.sql
bsmtp
startmysql
stopmysql
wx−console
wx−console.conf

Installing Tray Monitor

The Tray Monitor is already installed if you used the −−enable−tray−monitor configure option and ran make
install.

As you don't run your graphical environment as root (if you do, you should change that bad habit), don't forget to
allow your user to read tray−monitor.conf, and to execute bacula−tray−monitor (this is not a security issue).

Then log into your graphical environment (KDE, Gnome or something else), run bacula−tray−monitor as your
user, and see if a cassette icon appear somewhere on the screen, usually on the task bar.
If it doesn't, follow the instructions below related to your environment or window manager.

GNOME

System tray, or notification area if you use the GNOME terminology, has been supported in GNOME since
version 2.2. To activate it, right−click on one of your panels, open the menu Add to this Panel, then Utility and
finally click on Notification Area.

KDE

System tray has been supported in KDE since version 3.1. To activate it, right−click on one of your panels, open
the menu Add, then Applet and finally click on System Tray.

Other window managers

Read the documentation to know if the Freedesktop system tray standard is supported by your window manager,
and if applicable, how to activate it.

Bacula Storage Management System

Installing Tray Monitor 43

Modifying the Bacula Configuration Files
See the chapter Configuring Bacula in this manual for instructions on how to set Bacula configuration files.

Getting Started Index Running Bacula

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Installing Bacula Index Bacula Configuration

Modifying the Bacula Configuration Files 44

http://www.bacula.org/

A Brief Turorial
This chapter will guide you through running Bacula. To do so, we assume you have installed Bacula, possibly in
a single file as shown in the previous chapter, in which case, you can run Bacula as non−root for these tests.
However, we assume that you have not changed the .conf files. If you have modified the .conf files, please go
back and uninstall Bacula, then reinstall it, but do not make any changes. The examples in this chapter use the
default configuration files, and will write the volumes to disk in your /tmp directory, in addition, the data backed
up will be the source directory where you built Bacula. As a consequence, you can run all the Bacula daemons
for these tests as non−root. Please note, in production, your File daemon(s) must run as root. See the Security
chapter for more information on this subject.

The general flow of running Bacula is:

cd <install−directory>1.
Start the Database (if using MySQL or PostgreSQL)2.
Start the Daemons with ./bacula start3.
Start the Console program to interact with the Director4.
Run a job5.
When the Volume fills, unmount the Volume, if it is a tape, label a new one, and continue running. In
this chapter, we will write only to disk files so you won't need to worry about tapes for the moment.

6.

Test recovering some files from the Volume just written to ensure the backup is good and that you know
how to recover. Better test before disaster strikes

7.

Add a second client.8.

Each of these steps is described in more detail below.

Before Running Bacula

Before running Bacula for the first time in production, we recommend that you run the test command in the
btape program as described in the Utility Program Chapter of this manual. This will help ensure that Bacula
functions correctly with your tape drive. If you have a modern HP, Sony, or Quantum DDS or DLT tape drive
running on Linux or Solaris, you can probably skip this test as Bacula is well tested with these drives and
systems. For all other cases, you are strongly encouraged to run the test before continuing. btape also has a fill
command that attempts to duplicate what Bacula does when filling a tape and writing on the next tape. You
should consider trying this command as well, but be forewarned, it can take hours (about 4 hours on my drive) to
fill a large capacity tape.

Starting the Database

If you are using MySQL or PostgreSQL as the Bacula database, you should start it before you attempt to run a
job to avoid getting error messages from Bacula when it starts. The scripts startmysql and stopmysql are what I
(Kern) use to start and stop my local MySQL. Note, if you are using SQLite, you will not want to use startmysql
or stopmysql. If you are running this in production, you will probably want to find some way to automatically
start MySQL or PostgreSQL after each system reboot.

If you are using SQLite (i.e. you specified the −−with−sqlite=xxx option on the ./configure command, you need
do nothing. SQLite is automatically started by Bacula.

A Brief Turorial 45

Starting the Daemons

To start the three daemons, from your installation directory, simply enter:

./bacula start

This script starts the Storage daemon, the File daemon, and the Director daemon, which all normally run as
daemons in the background. If you are using the autostart feature of Bacula, your daemons will either be
automatically started on reboot, or you can control them individually with the files bacula−dir, bacula−fd, and
bacula−sd, which are usually located in /etc/init.d, though the actual location is system dependent.

Note, on Windows, currently only the File daemon is ported, and it must be started differently. Please see the
Windows Version of Bacula Chapter of this manual.

The rpm packages configure the daemons to run as user=root and group=bacula. The rpm installation also creates
the group bacula if it does not exist on the system. Any users that you add to the group bacula will have access to
files created by the daemons. To disable or alter this behavior edit the daemon startup scripts:

/etc/bacula/bacula•
/etc/init.d/bacula−dir•
/etc/init.d/bacula−sd•
/etc/init.d/bacula−fd•

and then restart as noted above.

The installation chapter of this manual explains how you can install scripts that will automatically restart the
daemons when the system starts.

Interacting with the Director to Query or Start Jobs

To communicate with the director and to query the state of Bacula or run jobs, from the top level directory,
simply enter:

./bconsole

Note, on 1.32 versions and lower, the command name is console rather than bconsole. Alternatively to running
the command line console, if you have GNOME installed and used the −−enable−gnome on the configure
command, you may use the GNOME Console program:

./gnome−console

For simplicity, here we will describe only the ./console program. Most of what is described here applies equally
well to ./gnome−console.

The ./bconsole runs the Bacula Console program, which connects to the Director daemon. Since Bacula is a
network program, you can run the Console program anywhere on your network. Most frequently, however, one
runs it on the same machine as the Director. Normally, the Console program will print something similar to the
following:

[kern@polymatou bin]$./bconsole

Bacula Storage Management System

Starting the Daemons 46

Connecting to Director lpmatou:9101
1000 OK: HeadMan Version: 1.30 (28 April 2003)
*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help
 Command Description
 ======= ===========
 add add media to a pool
 autodisplay autodisplay [on/off] −− console messages
 automount automount [on/off] −− after label
 cancel cancel job=nnn −− cancel a job
 create create DB Pool from resource
 delete delete [pool=<pool−name> | media volume=<volume−name>]
 estimate performs FileSet estimate debug=1 give full listing
 exit exit = quit
 help print this command
 label label a tape
 list list [pools | jobs | jobtotals | media <pool> |
 files jobid=<nn>]; from catalog
 llist full or long list like list command
 messages messages
 mount mount <storage−name>
 prune prune expired records from catalog
 purge purge records from catalog
 query query catalog
 quit quit
 relabel relabel a tape
 release release <storage−name>
 restore restore files
 run run <job−name>
 setdebug sets debug level
 show show (resource records) [jobs | pools | ... | all]
 sqlquery use SQL to query catalog
 status status [storage | client]=<name>
 time print current time
 unmount unmount <storage−name>
 update update Volume or Pool
 use use catalog xxx
 var does variable expansion
 version print Director version
 wait wait until no jobs are running
*

Details of the console program's commands are explained in the Console Chapter of this manual.

Running a Job

At this point, we assume you have done the following:

Configured Bacula with ./configure −−your−options•
Built Bacula using make•
Installed Bacula using make install•
Have created your database with, for example, ./create_sqlite_database•

Bacula Storage Management System

Running a Job 47

Have created the Bacula database tables with, ./make_bacula_tables•
Have possibly edited your bacula−dir.conf file to personalize it a bit. BE CAREFUL! if you change the
Director's name or password, you will need to make similar modifications in the other .conf files. For the
moment it is probably better to make no changes.

•

You have started Bacula with ./bacula start•
You have invoked the Console program with ./bconsole•

Furthermore, we assume for the moment you are using the default configuration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set
 Inc: /home/kern/bacula/bacula−1.30
 Exc: /proc
 Exc: /tmp
 Exc: /.journal
 Exc: /.fsck
FileSet: name=Catalog
 Inc: /home/kern/bacula/testbin/working/bacula.sql

This is a pre−defined FileSet that will backup the Bacula source directory. The actual directory names printed
should correspond to your system configuration. For testing purposes, we have chosen a directory of moderate
size (about 40 Megabytes) and complexity without being too big. The FileSet Catalog is used for backing up
Bacula's catalog and is not of interest to us for the moment. The Inc: entries are the files or directories that will
be included in the backup and the Exc: are those that will be excluded.

Now is the time to run your first backup job. We are going to backup your Bacula source directory to a File
Volume in your /tmp directory just to show you how easy it is. Now enter:

status dir

and you should get the following output:

rufus−dir Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Console connected at 28−Apr−2003 14:03
No jobs are running.
Level Type Scheduled Name
===
Incremental Backup 29−Apr−2003 01:05 Client1
Full Backup 29−Apr−2003 01:10 BackupCatalog
====

where the times and the Director's name will be different according to your setup. This shows that an Incremental
job is scheduled to run for the Job Client1 at 1:05am and that at 1:10, a BackupCatalog is scheduled to run.
Note, you should probably change the name Client1 to be the name of your machine, if not, when you add
additional clients, it will be very confusing. For my real machine, I use Rufus rather than Client1 as in this
example.

Now enter:

Bacula Storage Management System

Running a Job 48

status client

and you should get something like:

The defined Client resources are:
 1: rufus−fd
Item 1 selected automatically.
Connecting to Client rufus−fd at rufus:8102

rufus−fd Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Director connected at: 28−Apr−2003 14:14
No jobs running.
====

In this case, the client is named rufus−fd your name will be different, but the line beginning with rufus−fd
Version ... is printed by your File daemon, so we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

and you should get:

The defined Storage resources are:
 1: File
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103

rufus−sd Version: 1.30 (28 April 2003)
Daemon started 28−Apr−2003 14:03, 0 Jobs run.
Device /tmp is not open.
No jobs running.
====

You will notice that the default Storage daemon device is named File and that it will use device /tmp, which is
not currently open.

Now, let's actually run a job with:

run

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula
A job name must be specified.
The defined Job resources are:
 1: Client1
 2: BackupCatalog
 3: RestoreFiles
Select Job resource (1−3):

Here, Bacula has listed the three different Jobs that you can run, and you should choose number 1 and type enter,
at which point you will get:

Run Backup job

Bacula Storage Management System

Running a Job 49

JobName: Client1
FileSet: Full Set
Level: Incremental
Client: rufus−fd
Storage: File
Pool: Default
When: 2003−04−28 14:18:57
OK to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and understand it. It is asking you if it is OK to
run a job named Client1 with FileSet Full Set (we listed above) as an Incremental job on your Client (your client
name will be different), and to use Storage File and Pool Default, and finally, it wants to run it now (the current
time should be displayed by your console).

Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or to not run the job
(no). Please enter yes, at which point you should immediately get the command prompt (an asterisk). If you wait
a few seconds, then enter the command messages you will get back something like:

28−Apr−2003 14:22 rufus−dir: Last FULL backup time not found. Doing
 FULL backup.
28−Apr−2003 14:22 rufus−dir: Start Backup JobId 1,
 Job=Client1.2003−04−28_14.22.33
28−Apr−2003 14:22 rufus−sd: Job Client1.2003−04−28_14.22.33 waiting.
 Cannot find any appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: FileStorage
 Media type: File
 Pool: Default

The first message, indicates that no previous Full backup was done, so Bacula is upgrading our Incremental job
to a Full backup (this is normal). The second message indicates that the job started with JobId 1., and the third
message tells us that Bacula cannot find any Volumes in the Pool for writing the output. This is normal because
we have not yet created (labeled) any Volumes. Bacula indicates to you all the details of the volume it needs.

At this point, the job is blocked waiting for a Volume. You can check this if you want by doing a status dir. In
order to continue, we must create a Volume that Bacula can write on. We do so with:

label

and Bacula will print:

The defined Storage resources are:
 1: File
Item 1 selected automatically.
Enter new Volume name:

at which point, you should enter some name beginning with a letter and containing only letters and numbers
(period, hyphen, and underscore) are also permitted. For example, enter TestVolume001, and you should get
back:

Defined Pools:
 1: Default
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103 ...
Sending label command for Volume "TestVolume001" Slot 0 ...
3000 OK label. Volume=TestVolume001 Device=/tmp

Bacula Storage Management System

Running a Job 50

Catalog record for Volume "TestVolume002", Slot 0 successfully created.
Requesting mount FileStorage ...
3001 OK mount. Device=/tmp

Finally, enter messages and you should get something like:

28−Apr−2003 14:30 rufus−sd: Wrote label to prelabeled Volume
 "TestVolume001" on device /tmp
28−Apr−2003 14:30 rufus−dir: Bacula 1.30 (28Apr03): 28−Apr−2003 14:30
JobId: 1
Job: Client1.2003−04−28_14.22.33
FileSet: Full Set
Backup Level: Full
Client: rufus−fd
Start time: 28−Apr−2003 14:22
End time: 28−Apr−2003 14:30
Files Written: 1,444
Bytes Written: 38,988,877
Rate: 81.2 KB/s
Software Compression: None
Volume names(s): TestVolume001
Volume Session Id: 1
Volume Session Time: 1051531381
Last Volume Bytes: 39,072,359
FD termination status: OK
SD termination status: OK
Termination: Backup OK

28−Apr−2003 14:30 rufus−dir: Begin pruning Jobs.
28−Apr−2003 14:30 rufus−dir: No Jobs found to prune.
28−Apr−2003 14:30 rufus−dir: Begin pruning Files.
28−Apr−2003 14:30 rufus−dir: No Files found to prune.
28−Apr−2003 14:30 rufus−dir: End auto prune.

If you don't see the output immediately, you can keep entering messages until the job terminates, or you can
enter, autodisplay on and your messages will automatically be displayed as soon as they are ready.

If you do an ls −l of your /tmp directory, you will see that you have the following item:

−rw−r−−−−− 1 kern kern 39072153 Apr 28 14:30 TestVolume001

This is the file Volume that you just wrote and it contains all the data of the job just run. If you run additional
jobs, they will be appended to this Volume unless you specify otherwise.

You might ask yourself if you have to label all the Volumes that Bacula is going to use. The answer for disk
Volumes, like the one we used, is no. It is possible to have Bacula automatically label volumes. For tape
Volumes, you will most likely have to label each of the Volumes you want to use.

If you would like to stop here, you can simply enter quit in the Console program, and you can stop Bacula with
./bacula stop. To clean up, simply delete the file /tmp/TestVolume001, and you should also re−initialize your
database using:

./drop_bacula_tables

./make_bacula_tables

Please note that this will erase all information about the previous jobs that have run, and that you might want to

Bacula Storage Management System

Running a Job 51

do it now while testing but that normally you will not want to re−initialize your database.

If you would like to try restoring the files that you just backed up, read the following section.

Restoring Your Files

If you have run the default configuration and the save of the Bacula source code as demonstrated above, you can
restore the backed up files in the Console program by entering:

restore all

where you will get:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of comma separated JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Select backup for a client before a specified time
 7: Enter a list of files to restore
 8: Enter a list of files to restore before a specified time
 9: Cancel
Select item: (1−9):

As you can see, there are a number of options, but for the current demonstration, please enter 5 to do a restore of
the last backup you did, and you will get the following output:

Defined Clients:
 1: rufus−fd
Item 1 selected automatically.
The defined FileSet resources are:
 1: 1 Full Set 2003−04−28 14:22:33
Item 1 selected automatically.
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
| JobId | Level | JobFiles | StartTime | VolumeName |
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
| 1 | F | 1444 | 2003−04−28 14:22:33 | TestVolume002 |
+−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
You have selected the following JobId: 1
Building directory tree for JobId 1 ...
1 Job inserted into the tree and marked for extraction.
The defined Storage resources are:
 1: File
Item 1 selected automatically.

You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.

cwd is: /

Bacula Storage Management System

Restoring Your Files 52

$

where I have truncated the listing on the right side to make it more readable. As you can see by starting at the top
of the listing, Bacula knows what client you have, and since there was only one, it selected it automatically,
likewise for the FileSet. Then Bacula produced a listing containing all the jobs that form the current backup, in
this case, there is only one, and the Storage daemon was also automatically chosen. Bacula then took all the files
that were in Job number 1 and entered them into a directory tree (a sort of in memory representation of your
filesystem). At this point, you can use the cd and ls ro dir commands to walk up and down the directory tree and
view what files will be restored. For example, if I enter cd /home/kern/bacula/bacula−1.30 and then enter dir I
will get a listing of all the files in the Bacula source directory. On your system, the path will be somewhat
different. For more information on this, please refer to the Restore Command Chapter of this manual for more
details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to
 /home/kern/bacula/testbin/working/restore.bsr

The restore job will require the following Volumes:

 TestVolume001

1444 files selected to restore.

Run Restore job
JobName: RestoreFiles
Bootstrap: /home/kern/bacula/testbin/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Full Set
Client: rufus−fd
Storage: File
JobId: *None*
When: 2003−04−28 14:53:54
OK to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bacula−restores. If you want to restore the files to their
original locations, you must use the mod option and explicitly set Where: to nothing (or to /). We recommend
you go ahead and answer yes and after a brief moment, enter messages, at which point you should get a listing of
all the files that were restored as well as a summary of the job that looks similar to this:

28−Apr−2003 14:56 rufus−dir: Bacula 1.30 (28Apr03): 28−Apr−2003 14:56
JobId: 2
Job: RestoreFiles.2003−04−28_14.56.06
Client: rufus−fd
Start time: 28−Apr−2003 14:56
End time: 28−Apr−2003 14:56
Files Restored: 1,444
Bytes Restored: 38,816,381
Rate: 9704.1 KB/s
FD termination status: OK

Bacula Storage Management System

Restoring Your Files 53

Termination: Restore OK

28−Apr−2003 14:56 rufus−dir: Begin pruning Jobs.
28−Apr−2003 14:56 rufus−dir: No Jobs found to prune.
28−Apr−2003 14:56 rufus−dir: Begin pruning Files.
28−Apr−2003 14:56 rufus−dir: No Files found to prune.
28−Apr−2003 14:56 rufus−dir: End auto prune.

After exiting the Console program, you can examine the files in /tmp/bacula−restores, which will contain a
small directory tree with all the files. Be sure to clean up at the end with:

rm −rf /tmp/bacula−restore

Quitting the Console Program

Simply enter the command quit.

Adding a Second Client

If you have gotten the example shown above to work on your system, you may be ready to add a second Client
(File daemon). That is you have a second machine that you would like backed up. The only part you need
installed on the other machine is the binary bacula−fd (or bacula−fd.exe for Windows) and its configuration file
bacula−fd.conf. You can start with the same bacula−fd.conf file that you are currently using and make one
minor modification to it to create the conf file for your second client. Change the File daemon name from
whatever was configured, rufus−fd in the example above, but your system will have a different name. The best is
to change it to the name of your second machine. For example:

...
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
 Name = rufus−fd
 FDport = 9102 # where we listen for the director
 WorkingDirectory = /home/kern/bacula/working
 Pid Directory = /var/run
}
...

would become:

...
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
 Name = matou−fd
 FDport = 9102 # where we listen for the director
 WorkingDirectory = /home/kern/bacula/working
 Pid Directory = /var/run
}
...

where I show just a portion of the file and have changed rufus−fd to matou−fd. The names you use are your
choice. For the moment, I recommend you change nothing else. Later, you will want to change the password.

Bacula Storage Management System

Quitting the Console Program 54

Now you should install that change on your second machine. Then you need to make some additions to your
Director's configuration file to define the new File daemon or Client. Starting from our original example which
should be installed on your system, you should add the following lines (essentially copies of the existing data but
with the names changed) to your Director's configuration file bacula−dir.conf.

#
Define the main nightly save backup job
By default, this job will back up to disk in /tmp
Job {
 Name = "Matou"
 Type = Backup
 Client = matou−fd
 FileSet = "Full Set"
 Schedule = "WeeklyCycle"
 Storage = File
 Messages = Standard
 Pool = Default
 Write Bootstrap = "/home/kern/bacula/working/matou.bsr"
}
Client (File Services) to backup
Client {
 Name = matou−fd
 Address = matou
 FDPort = 9102
 Catalog = MyCatalog
 Password = "xxxxx" # password for
 File Retention = 30d # 30 days
 Job Retention = 180d # six months
 AutoPrune = yes # Prune expired Jobs/Files
}

Then make sure that the Address parameter in the Storage resource is set to the fully qualified domain name and
not to something like "localhost". The address specified is sent to the File daemon (client) and it must be a fully
qualified domain name. If you pass something like "localhost" it will not resolve correctly and will result in a
time out when the File daemon fails to connect to the Storage daemon.

That is all that is necessary. I copied the existing resource to create a second Job (Matou) to backup the second
client (matou−fd). It has the name Matou, the Client is named matou−fd, and the bootstrap file name is changed,
but everything else is the same. This means that Matou will be backed up on the same schedule using the same
set of tapes. You may want to change that later, but for now, let's keep it simple.

The second change was to add a new Client resource that defines matou−fd and has the correct address matou,
but in real life, you may need a fully qualified machine address or an IP address. I also kept the password the
same (shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on the other machine, everything will be ready,
and the prompts that you saw above will now include the second machine.

To make this a real production installation, you will possibly want to use different Pool, or a different schedule. It
is up to you to customize. In any case, you should change the password in both the Director's file and the Client's
file for additional security.

For some important tips on changing names and passwords, and a diagram of what names and passwords must
match, please see Authorization Errors in the FAQ chapter of this manual.

Bacula Storage Management System

Quitting the Console Program 55

When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time when the tape fills up and Bacula
cannot continue. In this case, Bacula will send you a message similar to the following:

rufus−sd: block.c:337 === Write error errno=28: ERR=No space left
 on device

This indicates that Bacula got a write error because the tape is full. Bacula will then search the Pool specified for
your Job looking for an appendable volume. In the best of all cases, you will have properly set your Retention
Periods and you will have all your tapes marked to be Recycled, and Bacula will automatically recycle the tapes
in your pool requesting and overwriting old Volumes. For more information on recycling, please see the
Recycling chapter of this manual. If you find that your Volumes were not properly recycled (usually because of a
configuration error), please see the Manually Recycling Volumes section of the Recycling chapter.

If like me, you have a very large set of Volumes and you label them with the date the Volume was first writing,
or you have not set up your Retention periods, Bacula will not find a tape in the pool, and it will send you a
message similar to the following:

rufus−sd: Job kernsave.2002−09−19.10:50:48 waiting. Cannot find any
 appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: SDT−10000
 Media type: DDS−4
 Pool: Default

Until you create a new Volume, this message will be repeated an hour later, then two hours later, and so on
doubling the interval each time up to a maximum interval of 1 day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, close the tape drive using the unmount command. If you
only have a single drive, it will be automatically selected, otherwise, make sure you release the one specified on
the message (in this case STD−10000).

Next, you remove the tape from the drive and insert a new blank tape. Note, on some older tape drives, you may
need to write an end of file mark (mt −f /dev/nst0 weof) to prevent the drive from running away when
Bacula attempts to read the label.

Finally, you use the label command in the Console to write a label to the new Volume. The label command will
contact the Storage daemon to write the software label, if it is successful, it will add the new Volume to the Pool,
then issue a mount command to the Storage daemon. See the previous sections of this chapter for more details on
labeling tapes.

The result is that Bacula will continue the previous Job writing the backup to the new Volume.

If you have a Pool of volumes and Bacula is cycling through them, instead of the above message "Cannot find
any appendable volumes.", Bacula may ask you to mount a specific volume. In that case, you should attempt to
do just that. If you do not have the volume any more (for any of a number of reasons), you can simply mount
another volume from the same Pool, providing it is appendable, and Bacula will use it. You can use the list
volumes command in the console program to determine which volumes are appendable and which are not.

Bacula Storage Management System

When The Tape Fills 56

If like me, you have your Volume retention periods set correctly, but you have no more free Volumes, you can
relabel and reuse a Volume as follows:

Do a list volumes in the Console and select the oldest Volume for relabeling.•
If you have setup your Retention periods correctly, the Volume should have VolStatus Purged.•
If the VolStatus is not set to Purged, you will need to purge the database of Jobs that are written on that
Volume. Do so by using the command purge jobs volume in the Console. If you have multiple Pools,
you will be prompted for the Pool then enter the VolumeName (or MediaId) when requested.

•

Then simply use the relabel command to relabel the Volume.•

To manually relabel the Volume use the following additional steps:

To delete the Volume from the catalog use the delete volume command in the Console and select the
VolumeName (or MediaId) to be deleted.

•

Use the unmount command in the Console to unmount the old tape.•
Physically relabel the old Volume that you deleted so that it can be reused.•
Insert the old Volume in the tape drive.•
From a command line do: mt −f /dev/st0 rewind and mt −f /dev/st0 weof, where you need
to use the proper tape drive name for your system in place of /dev/st0.

•

Use the label command in the Console to write a new Bacula label on your tape.•
Use the mount command in the Console if it is not automatically done, so that Bacula starts using your
newly labeled tape.

•

Other Useful Console Commands

status dir
Print a status of all running jobs and jobs scheduled in the next 24 hours.

status
The console program will prompt you to select a daemon type, then will request the daemon's status.

status jobid=nn
Print a status of JobId nn if it is running. The Storage daemon is contacted and requested to print a
current status of the job as well.

list pools
List the pools defined in the Catalog (normally only Default is used).

list media
Lists all the media defined in the Catalog.

list jobs
Lists all jobs in the Catalog that have run.

list jobid=nn
Lists JobId nn from the Catalog.

list jobtotals
Lists totals for all jobs in the Catalog.

list files jobid=nn
List the files that were saved for JobId nn.

list jobmedia
List the media information for each Job run.

messages
Prints any messages that have been directed to the console.

unmount storage=storage−name
Unmounts the drive associated with the storage device with the name storage−name if the drive is not

Bacula Storage Management System

Other Useful Console Commands 57

currently being used. This command is used if you wish Bacula to free the drive so that you can use it to
label a tape.

mount storage=storage−name
Causes the drive associated with the storage device to be mounted again. When Bacula reaches the end of
a volume and requests you to mount a new volume, you must issue this command after you have placed
the new volume in the drive. In effect, it is the signal needed by Bacula to know to start reading or
writing the new volume.

quit
Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary arguments if
you simply enter the command name.

More Advanced Features

Debug Daemon Output

If you want debug output from the daemons as they are running, start the daemons from the install directory as
follows:

./bacula start −d20

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is OK, especially if one of the daemons
has died, which is very rare.

To do a full system save, each File daemon must be running as root so that it will have permission to access all
the files. None of the other daemons require root privileges. However, the Storage daemon must be able to open
the tape drives. On many systems, only root can access the tape drives. Either run the Storage daemon as root, or
change the permissions on the tape devices to permit non−root access. MySQL and PostgreSQL can be installed
and run with any userid; root privilege is not necessary.

Have Patience When Starting the Daemons or Mounting Blank
Tapes

When you start the Bacula daemons, the Storage daemon attempts to open all defined storage devices and verify
the currently mounted Volume (if configured). Until all the storage devices are verified, the Storage daemon will
not accept connections from the Console program. If a tape was previously used, it will be rewound, and on some
devices this can take several minutes. As a consequence, you may need to have a bit of patience when first
contacting the Storage daemon after starting the daemons. If you can see your tape drive, once the lights stop
flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in a drive such as an HP DLT. It can take a
minute or two before the drive properly recognizes that the tape is blank. If you attempt to mount the tape with
the Console program during this recognition period, it is quite possible that you will hang your SCSI driver (at
least on my RedHat Linux system). As a consequence, you are again urged to have patience when inserting blank

Bacula Storage Management System

More Advanced Features 58

tapes. Let the device settle down before attempting to access it.

Difficulties Connecting from the FD to the SD

If you are having difficulties getting one or more of your File daemons to connect to the Storage daemon, it is
most likely because you have not used a fully qualified Internet address on the Address directive in the Director's
Storage resource. That is the resolver on the File daemon's machine (not on the Director's) must be able to resolve
the name you supply into an IP address. An example of an address that is guaranteed not to work: localhost. An
example that may work: megalon. An example that is more likely to work: magalon.mydomain.com. On Win32
if you don't have a good resolver (often true on older Win98 systems), you might try using an IP address in place
of a name.

If your address is correct, then make sure that no other program is using the port 9103 on the Storage daemon's
machine. The Bacula port number are authorized by IANA, and should not be used by other programs, but
apparently some HP printers do use these port numbers. A netstat −a on the Storage daemon's machine can
determine who is using the 9103 port (used for FD to SD communications in Bacula).

Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of options on the command line. In
general, each of the daemons as well as the Console program accepts the following options:

−c <file>
Define the file to use as a configuration file. The default is the daemon name followed by .conf i.e.
bacula−dir.conf for the Director, bacula−fd.conf for the File daemon, and bacula−sd for the Storage
daemon.

−d nn
Set the debug level to nn. Higher levels of debug cause more information to displayed on STDOUT
concerning what the daemon is doing.

−f
Run the daemon in the foreground. This option is needed to run the daemon under the debugger.

−s
Do not trap signals. This option is needed to run the daemon under the debugger.

−t
Read the configuration file and print any error messages, then immediately exit. Useful for syntax testing
of new configuration files.

−v
Be more verbose or more complete in printing error and informational messages. Recommended.

−?
Print the version and list of options.

The Director has the following additional Director specific option:

−r <job>
Run the named job immediately. This is for debugging and should not be used.

The File daemon has the following File daemon specific option:

−i

Bacula Storage Management System

Difficulties Connecting from the FD to the SD 59

Assume that the daemon is called from inetd or xinetd. In this case, the daemon assumes that a
connection has already been made and that it is passed as STDIN. After the connection terminates the
daemon will exit.

The Storage daemon has no Storage daemon specific options.

The Console program has no console specific options.

Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you understand Pools, you can skip to the next
section.

When you run a job, one of the things that Bacula must know is what Volumes to use to backup the FileSet.
Instead of specifying a Volume (tape) directly, you specify which Pool of Volumes you want Bacula to consult
when it wants a tape for writing backups. Bacula will select the first available Volume from the Pool that is
appropriate for the Storage device you have specified for the Job being run. When a volume has filled up with
data, Bacula will change its VolStatus from Append to Full, and then Bacula will use the next volume and so
on. If no appendable Volume exists in the Pool, the Director will attempt to recycle an old Volume, if there are
still no appendable Volumes available, Bacula will send a message requesting the operator to create an
appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool, and a number of attributes of each of
those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been recorded in the catalog. You can verify
this by entering:

list pools

to the console program, which should print something like the following:

*list pools
Using default Catalog name=MySQL DB=bacula
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| 1 | Default | 3 | 0 | Backup | * |
| 2 | File | 12 | 12 | Backup | File |
+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
*

If you attempt to create the same Pool name a second time, Bacula will print:

Error: Pool Default already exists.

Once created, you may use the update command to modify many of the values in the Pool record.

Labeling Your Volumes

Bacula requires that each Volume contain a software label. There are several strategies for labeling volumes. The
one I use is to label them as they are needed by Bacula using the console program. That is when Bacula needs a

Bacula Storage Management System

Creating a Pool 60

new Volume, and it does not find one in the catalog, it will send me an email message requesting that I add
Volumes to the Pool. I then use the label command in the Console program to label a new Volume and to define
it in the Pool database, after which Bacula will begin writing on the new Volume. Alternatively, I can use the
Console relabel command to relabel a Volume that is no longer used providing it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as Bacula requests them. This is most
often done if you are cycling through a set of tapes, for example using an autochanger. For more details on
recycling, please see the Automatic Volume Recycling chapter of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula will inform you, and you can create
them "on−the−fly" so to speak. In my case, I label my tapes with the date, for example: DLT−18April02. See
below for the details of using the label command.

Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

./bconsole1.
label2.

If Bacula complains that you cannot label the tape because it is already labeled, simply unmount the tape using
the unmount command in the console, then physically mount a blank tape and re−issue the label command.

Since the physical storage media is different for each device, the label command will provide you with a list of
the defined Storage resources such as the following:

The defined Storage resources are:
 1: File
 2: 8mmDrive
 3: DLTDrive
 4: SDT−10000
Select Storage resource (1−4):

At this point, you should have a blank tape in the drive corresponding to the Storage resource that you select.

It will then ask you for the Volume name.

Enter new Volume name:

If Bacula complains:

Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the Media database. You can list all the
defined Media (Volumes) with the list media command. Note, the LastWritten column has been truncated for
proper printing.

+−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−/~/−+−−−−−−−−−−−−+−−−−−+
| VolumeName | MediaTyp| VolStat| VolBytes | LastWri | VolReten | Recy|
+−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−+
DLTVol0002	DLT8000	Purged	56,128,042,217	2001−10	31,536,000	0
DLT−07Oct2001	DLT8000	Full	56,172,030,586	2001−11	31,536,000	0
DLT−08Nov2001	DLT8000	Full	55,691,684,216	2001−12	31,536,000	0

Bacula Storage Management System

Labeling Volumes with the Console Program 61

DLT−01Dec2001	DLT8000	Full	55,162,215,866	2001−12	31,536,000	0
DLT−28Dec2001	DLT8000	Full	57,888,007,042	2002−01	31,536,000	0
DLT−20Jan2002	DLT8000	Full	57,003,507,308	2002−02	31,536,000	0
DLT−16Feb2002	DLT8000	Full	55,772,630,824	2002−03	31,536,000	0
DLT−12Mar2002	DLT8000	Full	50,666,320,453	1970−01	31,536,000	0
DLT−27Mar2002	DLT8000	Full	57,592,952,309	2002−04	31,536,000	0
DLT−15Apr2002	DLT8000	Full	57,190,864,185	2002−05	31,536,000	0
DLT−04May2002	DLT8000	Full	60,486,677,724	2002−05	31,536,000	0
DLT−26May02	DLT8000	Append	1,336,699,620	2002−05	31,536,000	1
+−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−/~/−+−−−−−−−−−−−−+−−−−−+

Once Bacula has verified that the volume does not already exist, it will then prompt you for the name of the Pool
in which the Volume (tape) to be created. If there is only one Pool (Default), it will be automatically selected.

If the tape is successfully labeled, a media record will also be created in the Pool. That is the Volume name and
all its other attributes will appear when you list the Pool. In addition, that Volume will be available for backup if
the MediaType matches what is requested by the Storage daemon.

When you labeled the tape, you answered very few questions about it −− principally the Volume name, and
perhaps the Slot. However, a Volume record in the catalog database (internally known as a Media record)
contains quite a few attributes. Most of these attributes will be filled in from the default values that were defined
in the Pool (i.e. the Pool holds most of the default attributes used when creating a Volume).

It is also possible to add media to the pool without physically labeling the Volumes. This can be done with the
add command. For more information, please see the Console Chapter of this manual.

Installing Bacula Index Bacula Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Installing Bacula Index Director Configuration

Bacula Storage Management System

Labeling Volumes with the Console Program 62

http://www.bacula.org/

Customizing the Configuration Files
When each of the Bacula programs starts, it reads a configuration file specified on the command line or the
default bacula−dir.conf, bacula−fd.conf, bacula−sd.conf, or console.conf for the Director daemon, the File
daemon, the Storage daemon, and the Console program respectively.

Each service (Director, Client, Storage, Console) has its own configuration file containing a set of Resource
definitions. These resources are very similar from one service to another, but may contain different directives
(records) depending on the service. For example, in the Director's resource file, the Director resource defines the
name of the Director, a number of global Director parameters and his password. In the File daemon configuration
file, the Director resource specifies which Directors are permitted to use the File daemon.

Before running Bacula for the first time, you must customize the configuration files for each daemon. Default
configuration files will have been created by the installation process, but you will need to modify them to
correspond to your system. An overall view of the resources can be seen in the following:

Customizing the Configuration Files 63

 (thanks to Aristedes Maniatis for the above graphic)

Resource Directive Format

Although, you won't need to know the details of all the directives a basic knowledge of Bacula resource
directives is essential. Each directive contained within the resource (within the braces) is composed of a keyword
followed by an equal sign (=) followed by one or more values. The keywords must be one of the known Bacula
resource record keywords, and it may be composed of upper or lower case characters and spaces.

Each resource definition MUST contain a Name directive, and may optionally contain a Description directive (or

Bacula Storage Management System

Resource Directive Format 64

record). The Name directive is used to uniquely identify the resource. The Description directive is (will be) used
during display of the Resource to provide easier human recognition. For example:

Director {
 Name = "MyDir"
 Description = "Main Bacula Director"
 WorkingDirectory = "$HOME/bacula/bin/working"
}

Defines the Director resource with the name "MyDir" and a working directory $HOME/bacula/bin/working. In
general, if you want spaces in a name to the right of the first equal sign (=), you must enclose that name within
double quotes. Otherwise quotes are not generally necessary because once defined, quoted strings and unquoted
strings are all equal.

Comments

When reading the configuration file, blank lines are ignored and everything after a hash sign (#) until the end of
the line is taken to be a comment. A semicolon (;) is a logical end of line, and anything after the semicolon is
considered as the next statement. If a statement appears on a line by itself, a semicolon is not necessary to
terminate it, so generally in the examples in this manual, you will not see many semicolons.

Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource directive keywords (the part before the equal
sign).

Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords: name, Name, and
N a m e are all identical.

Spaces after the equal sign and before the first character of the value are ignored.

In general, spaces within a value are significant (not ignored), and if the value is a name, you must enclose the
name in double quotes for the spaces to be accepted. Names may contain up to 127 characters. Currently, a name
may contain any ASCII character. Within a quoted string, any character following a backslash (\) is taken as itself
(handy for inserting blackslashes and double quotes (").

Please note, however, that Bacula resource names as well as certain other names (e.g. Volume names) will in the
future be severely limited to permit only letters (including ISO accented letters), numbers, and a few special
characters (space, underscore, ...). All other characters and punctuation will be illegal.

Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do so by including other files using the
syntax @filename where filename is the full path and filename of another file. The @filename specification can
be given anywhere a primitive token would appear.

Recognized Primitive Data Types

When parsing the resource directives, Bacula classifies the data according to the types listed below. The first time
you read this, it may appear a bit overwhelming, but in reality, it is all pretty logical and straight forward.

Bacula Storage Management System

Comments 65

name
A keyword or name consisting of alpha numeric characters, including the hyphen, underscore, and dollar
characters. The first character of a name must be a letter. A name has a maximum length currently set to
127 bytes. Typically keywords appear on the left side of an equal (i.e. they are Bacula keywords −− i.e.
Resource names or directive names). Keywords may not be quoted.

name−string
A name−string is similar to a name, except that the name may be quoted and can thus contain additional
characters including spaces. Name strings are limited to 127 characters in length. Name strings are
typically used on the right side of an equal (i.e. they are values to be associated with a keyword.

string
A quoted string containing virtually any character including spaces, or a non−quoted string. A string may
be of any length. Strings are typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself, so to include a double quote in a
string, you precede the double quote with a backslash. Likewise to include a backslash.

directory
A directory is either a quoted or non−quoted string. A directory will be passed to your standard shell for
expansion when it is scanned. Thus constructs such as $HOME are interpreted to be their correct values.

password
This is a Bacula password and it is stored internally in MD5 hashed format.

integer
A 32 bit integer value. It may be positive or negative.

positive integer
A 32 bit positive integer value.

long integer
A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion and thus require
a 64 bit value.

yes/no
Either a yes or a no.

size
A size specified as bytes. Typically, this is a floating point scientific input format followed by an optional
modifier. The floating point input is stored as a 64 bit integer value. If a modifier is present, it must
immediately follow the value with no intervening spaces. The following modifiers are permitted:

k
1,024 (kilobytes)

kb
1,000 (kilobytes)

m
1,048,576 (megabytes)

mb
1,000,000 (megabytes)

g
1,073,741,824 (gigabytes)

gb
1,000,000,000 (gigabytes)

time
A time or duration specified in seconds. The time is stored internally as a 64 bit integer value, but it is
specified in two parts: a number part and a modifier part. The number can be an integer or a floating
point number. If it is entered in floating point notation, it will be rounded to the nearest integer. The
modifer is mandatory and follows the number part, either with or without intervening spaces. The

Bacula Storage Management System

Comments 66

following modifiers are permitted:

seconds
seconds

minutes
minutes (60 seconds)

hours
hours (3600 seconds)

days
days (3600*24 seconds)

weeks
weeks (3600*24*7 seconds)

months
months (3600*24*30 seconds)

quarters
quarters (3600*24*91 seconds)

years
years (3600*24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as sec or s. A
specification of m will be taken as months.

The specification of a time my have as may number/modifier parts as you wish. For example:

1 week 2 days 3 hours 10 mins
1 month 2 days 30 sec

are valid date specifications (beginning with version 1.35.1).

Note! in Bacula version 1.31 and below, the modifier was optional. It is now manditory.

Resource Types

The following table lists all current Bacula resource types. It shows what resources must be defined for each
service (daemon). The default configuration files will already contain at least one example of each permitted
resource, so you need not worry about creating all these kinds of resources from scratch.

Resource Director Client Storage Console

Catalog Yes No No No

Client Yes Yes No No

Console Yes No No Yes

Device No No Yes No

Bacula Storage Management System

Resource Types 67

Director Yes Yes Yes Yes

FileSet Yes No No No

Job Yes No No No

JobDefs Yes No No No

Message Yes Yes Yes No

Pool Yes No No No

Schedule Yes No No No

Storage Yes No Yes No

Bacula Storage Management System

Resource Types 68

Names, Passwords and Authorization
In order for one daemon to contact another daemon, it must authorize itself with a password. In most cases, the
password corresponds to a particular name, so both the name and the password must match to be authorized.

The default configuration files are automatically defined for correct authorization with random passwords. If you
add to or modify these files, you will need to take care to keep them consistent.

Here is sort of a picture of what names/passwords in which files/Resources must match up:

Director −− bacula−dir.conf: Console −− bconsole.conf
Director { Director {
 Name = fw−dir <========|====> Name = fw−dir
 Password = aaa <=============> Pasword = aaa
 ... | ...
} | }
 |
 | ======================
 | SD −− bacula−sd.conf
Storage { | Device {
 Name = fw−sd | ...
 Device = DDS−4 <============> Name = DDS−4
 MediaType = DDS−4 <============> MediaType = DDS−4
 *Address = fd−sd | ...
 Password = bbb <=====| | }
 ... | | Director {
} | |===> Name = fw−dir
 |======> Password = bbb
 | }
 |
 | =====================
 | FD −− bacula−fd.conf
Client { | Director {
 Name = fw−fd |===> Name = fw−dir
 Password = ccc <============> Password = ccc

} }

In the left column, you will find the Director, Storage, and Client resources, with their names and passwords −−
these are all in bacula−dir.conf. In the right column are where the corresponding values should be found in the
Console, Storage daemon (SD), and File daemon (FD) configuration files.

Please note that the Address, fd−sd, that appears in the Storage resource of the Director, preceded with and
asterisk in the above example, is passed to the File daemon in symbolic form. The File daemon then resolves it to
an IP address. For this reason, you must use either an IP address or a fully qualified name. A name such as
localhost, not being a fully qualified name, will resolve in the File daemon to the localhost of the File daemon,
which is most likely not what is desired. The password used for the File daemon to authorize with the Storage
daemon is a temporary password unique to each Job created by the daemons and is not specified in any .conf file.

Detailed Information for each Daemon

The details of each Resource and the directives permitted therein are described in the following chapters.

The following configuration files must be defined:

Names, Passwords and Authorization 69

Console −− to define the resources for the Console program (user interface to the Director). It defines
which Directors are available so that you may interact with them.

•

Director −− to define the resources necessary for the Director. You define all the Clients and Storage
daemons that you use in this configuration file.

•

Client −− to define the resources for each client to be backed up. That is, you will have a separate Client
resource file on each machine that runs a File daemon.

•

Storage −− to define the resources to be used by each Storage daemon. Normally, you will have a single
Storage daemon that controls your tape drive or tape drives. However, if you have tape drives on several
machines, you will have at least one Storage daemon per machine.

•

Installing Bacula Index Director Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Bacula Configuration Index Client/File daemon Configuration

Bacula Storage Management System

Names, Passwords and Authorization 70

http://www.bacula.org/

Configuring the Director
Of all the configuration files needed to run Bacula, the Director's is the most complicated, and the one that you
will need to modify the most often as you add clients or modify the FileSets.

For a general discussion of configuration file and resources including the data types recognized by Bacula.
Please see the Configuration chapter of this manual.

Director Resource Types

Director resource type may be one of the following:

Job, JobDefs, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or Messages.

We present them here in the most logical order for defining them:

Director −− to define the Director's name and its access password used for authenticating the Console
program. Only a single Director resource definition may appear in the Director's configuration file. If you
have either /dev/random or bc on your machine, Bacula will generate a random password during the
configuration process, otherwise it will be left blank.

•

Job −− to define the backup/restore Jobs and to tie together the Client, FileSet and Schedule resources to
be used for each Job.

•

JobDefs −− optional resource for providing defaults for Job resources.•
Schedule −− to define when a Job is to be automatically run by Bacula's internal scheduler.•
FileSet −− to define the set of files to be backed up for each Client.•
Client −− to define what Client is to be backed up.•
Storage −− to define on what physical device the Volumes should be mounted.•
Pool −− to define what the pool of Volumes that can be used for a particular Job.•
Catalog −− to define in what database to keep the list of files and the Volume names where they are
backed up.

•

Messages −− to define where error and information messages are to be sent or logged.•

Configuring the Director 71

The Director Resource
The Director resource defines the attributes of the Directors running on the network. In the current
implementation, there is only a single Director resource, but the final design will contain multiple Directors to
maintain index and media database redundancy.

Director
Start of the Director resource. One and only one director resource must be supplied.

Name = <name>
The director name used by the system administrator. This directive is required.

Description = <text>
The text field contains a description of the Director that will be displayed in the graphical user interface.
This directive is optional.

Password = <UA−password>
Specifies the password that must be supplied for the default Bacula Console to be authorized. The same
password must appear in the Director resource of the Console configuration file. For added security, the
password is never actually passed across the network but rather a challenge response hash code created
with the password. This directive is required. If you have either /dev/random bc on your machine,
Bacula will generate a random password during the configuration process, otherwise it will be left blank
and you must manually supply it.

Messages = <Messages−resource−name>
The messages resource specifies where to deliver Director messages that are not associated with a
specific Job. Most messages are specific to a job and will be directed to the Messages resource specified
by the job. However, there are a few messages that can occur when no job is running. This directive is
required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its status files. This
directory should be used only by Bacula but may be shared by other Bacula daemons. Standard shell
expansion of the Directory is done when the configuration file is read so that values such as $HOME
will be properly expanded. This directive is required.

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its process Id file
files. The process Id file is used to shutdown Bacula and to prevent multiple copies of Bacula from
running simultaneously. Standard shell expansion of the Directory is done when the configuration file is
read so that values such as $HOME will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the system
directories, you can use the Working Directory as defined above. This directive is required.

QueryFile = <Path>
This directive is mandatory and specifies a directory and file in which the Director can find the canned
SQL statements for the Query command of the Console. Standard shell expansion of the Path is done
when the configuration file is read so that values such as $HOME will be properly expanded. This
directive is required.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of total Director Jobs that should run concurrently. The default
is set to 1, but you may set it to a larger number.
Please note that the Volume format becomes much more complicated with multiple simultaneous jobs,
consequently, restores can take much longer if Bacula must sort through interleaved volume blocks from
multiple simultaneous jobs. This can be avoided by having each simultaneously running job write to a
different volume or by using data spooling, which will first spool the data to disk simultaneously, then

The Director Resource 72

write each spool file to the volume in sequence.

There may also still be some cases where directives such as Maximum Volume Jobs are not properly
synchronized with multiple simultaneous jobs (subtle timing issues can arise), so careful testing is
recommended.

At the current time, there is no configuration parameter set or limit the number console connections. A
maximum of five simultaneous console connections are permitted.

For more details on getting concurrent jobs to run, please see Running Concurrent Jobs in the Tips
chapter of this manual.

FD Connect Timeout = <time>
where time is the time that the Director should continue attempting to contact the File daemon to start a
job, and after which the Director will cancel the job. The default is 30 minutes.

SD Connect Timeout = <time>
where time is the time that the Director should continue attempting to contact the Storage daemon to start
a job, and after which the Director will cancel the job. The default is 30 minutes.

DirAddresses = <IP−address−specification>
Specify the ports and addresses on which the Director daemon will listen for Bacula Console
connections. Probably the simplest way to explain is to show an example:
 DirAddresses = { ip = {
 addr = 1.2.3.4; port = 1205; }
 ipv4 = {
 addr = 1.2.3.4; port = http; }
 ipv6 = {
 addr = 1.2.3.4;
 port = 1205;
 }
 ip = {
 addr = 1.2.3.4
 port = 1205
 }
 ip = {
 addr = 1.2.3.4
 }
 ip = {
 addr = 201:220:222::2
 }
 ip = {
 addr = bluedot.thun.net
 }
 }

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also, port
can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by IPv4
or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

DIRport = <port−number>
Specify the port (a positive integer) on which the Director daemon will listen for Bacula Console
connections. This same port number must be specified in the Director resource of the Console
configuration file. The default is 9101, so normally this directive need not be specified. This directive is
not needed if you specify DirAddresses.

Bacula Storage Management System

The Director Resource 73

DirAddress = <IP−Address>
This directive is optional, but if it is specified, it will cause the Director server (for the Console program)
to bind to the specified IP−Address, which is either a domain name or an IP address specified as a dotted
quadruple in string or quoted string format. If this directive is not specified, the Director will bind to any
available address (the default). Note, unlike the DirAddresses specification noted above, this directive
only permits a single address to be specified. This directive is not needed if you specify a DirAddresses
(not plural).

The following is an example of a valid Director resource definition:

Director {
 Name = HeadMan
 WorkingDirectory = "$HOME/bacula/bin/working"
 Password = UA_password
 PidDirectory = "$HOME/bacula/bin/working"
 QueryFile = "$HOME/bacula/bin/query.sql"
 Messages = Standard
}

Bacula Storage Management System

The Director Resource 74

The Job Resource
The Job resource defines a Job (Backup, Restore, ...) that Bacula must perform. Each Job resource definition
contains the names of the Clients and their FileSets to backup or restore, the Schedule for the Job, where the data
are to be stored, and what media Pool can be used. In effect, each Job resource must specify What, Where, How,
and When or FileSet, Storage, Backup/Restore/Level, and Schedule respectively.

Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup multiple FileSets on
the same Client or multiple Clients, you must define a Job for each one.

Job
Start of the Job resource. At least one Job resource is required.

Name = <name>
The Job name. This name can be specified on the Run command in the console program to start a job. If
the name contains spaces, it must be specified between quotes. It is generally a good idea to give your job
the same name as the Client that it will backup. This permits easy identification of jobs.
When the job actually runs, the unique Job Name will consist of the name you specify here followed by
the date and time the job was scheduled for execution. This directive is required.

Type = <job−type>
The Type directive specifies the Job type, which may be one of the following: Backup, Restore, Verify,
or Admin. This directive is required. Within a particular Job Type, there are also Levels as discussed in
the next item.
Backup

Run a backup Job. Normally you will have at least one Backup job for each client you want to
save. Normally, unless you turn off cataloging, most all the important statistics and data
concerning files backed up will be placed in the catalog.

Restore
Run a restore Job. Normally, you will specify only one Restore job which acts as a sort of
prototype that you will modify using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the catalog, it is very minimal compared
to the information stored for a Backup job −− for example, no File database entries are generated
since no Files are saved.

Verify
Run a verify Job. In general, verify jobs permit you to compare the contents of the catalog to the
file system, or to what was backed up. In addition, to verifying that a tape that was written can be
read, you can also use verify as a sort of tripwire intrusion detection.

Admin
Run a admin Job. An Admin job can be used to periodically run catalog pruning, if you do not
want to do it at the end of each Backup Job. Although an Admin job is recorded in the catalog,
very little data is saved.

Level = <job−level>
The Level directive specifies the default Job level to be run. Each different Job Type (Backup, Restore,
...) has a different set of Levels that can be specified. The Level is normally overridden by a different
value that is specified in the Schedule resource. This directive is not required, but must be specified
either by a Level directive or as a override specified in the Schedule resource.
For a Backup Job, the Level may be one of the following:

Full
is all files in the FileSet whether or not they have changed.

The Job Resource 75

Incremental
is all files that have changed since the last successful backup of the specified FileSet. If the
Director cannot find a previous Full backup then the job will be upgraded into a Full backup.
When the Director looks for a "suitable" backup record in the catalog database, it looks for a
previous Job with:

The same Job name.⋅
The same Client name.⋅
The same FileSet (any change to the definition of the FileSet such as adding or deleting a
file in the Include or Exclude sections constitutes a different FileSet.

⋅

The Job was a Full, Differential, or Incremental backup.⋅
The Job terminated normally (i.e. did not fail or was not canceled).⋅

If all the above conditions do not hold, the Director will upgrade the Incremental to a Full save.
Otherwise, the Incremental backup will be performed as requested.

The File daemon (Client) decides which files to backup for an Incremental backup by comparing
start time of the prior Job (Full, Differential, or Incremental) against the time each file was last
"modified" (st_mtime) and the time its attributes were last "changed"(st_ctime). If the file was
modified or its attributes changed on or after this start time, it will then be backed up.

Please note that some virus scanning software may change st_ctime while doing the scan. For
exaple, if the the virus scanning program attempts to reset the access time (st_atime), which
Bacula does not use, it will cause st_ctime to change and hence Bacula will backup the file
during an Incremental or Differential backup. In the case of Sophos virus scanning, you can
prevent it from resetting the access time (st_atime) and hence changing st_ctime by using the
−−no−reset−atime option. For other software, please see their manual.

When Bacula does an Incremental backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in the
Bacula catalog, which means that if between a Full save and the time you do a restore, some files
are deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted files from the catalog during a
Incremental backup is quite a time consuming process and not currently implemented in Bacula.

Differential
is all files that have changed since the last successful Full backup of the specified FileSet. If the
Director cannot find a previous Full backup or a suitable Full backup, then the Differential job
will be upgraded into a Full backup. When the Director looks for a "suitable" Full backup record
in the catalog database, it looks for a previous Job with:

The same Job name.⋅
The same Client name.⋅
The same FileSet (any change to the definition of the FileSet such as adding or deleting a
file in the Include or Exclude sections constitutes a different FileSet.

⋅

The Job was a FULL backup.⋅
The Job terminated normally (i.e. did not fail or was not canceled).⋅

If all the above conditions do not hold, the Director will upgrade the Differential to a Full save.
Otherwise, the Differential backup will be performed as requested.

The File daemon (Client) decides which files to backup for a differential backup by comparing
the start time of the prior Full backup Job against the time each file was last "modified"
(st_mtime) and the time its attributes were last "changed"(st_ctime). If the file was modified or
its attributs were changed on or after this start time, it will then be backed up. The start time used

Bacula Storage Management System

The Job Resource 76

is displayed after the Since on the Job report. In rare cases, using the start time of the prior
backup may cause some files to be backed up twice, but it ensures that no change is missed. As
with the Incremental option, you shouldensure that the clocks on your server and client are
synchronized or as close as possible to avoid the possibility of a file being skipped. Note, on
versions 1.33 or greater Bacula automatically makes the necessary adjstments to the time
between the server and the client so that the times Bacula uses are synchronized.

When Bacula does an Differential backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in the
Bacula catalog, which means that if between a Full save and the time you do a restore, some files
are deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted files from the catalog during a
Differential backup is quite a time consuming process and not currently implemented in Bacula.

For a Restore Job, no level need be specified.

For a Verify Job, the Level may be one of the following:

InitCatalog
does a scan of the specified FileSet and stores the file attributes in the Catalog database. Since no
file data is saved, you might ask why you would want to do this. It turns out to be a very simple
and easy way to have a Tripwire like feature using Bacula. In other words, it allows you to save
the state of a set of files defined by the FileSet and later check to see if those files have been
modified or deleted and if any new files have been added. This can be used to detect system
intrusion. Typically you would specify a FileSet that contains the set of system files that should
not change (e.g. /sbin, /boot, /lib, /bin, ...). Normally, you run the InitCatalog level verify one
time when your system is first setup, and then once again after each modification (upgrade) to
your system. Thereafter, when your want to check the state of your system files, you use a
Verify level = Catalog. This compares the results of your InitCatalog with the current state of
the files.

Catalog
Compares the current state of the files against the state previously saved during an InitCatalog.
Any discrepancies are reported. The items reported are determined by the verify options
specified on the Include directive in the specified FileSet (see the FileSet resource below for
more details). Typically this command will be run once a day (or night) to check for any changes
to your system files.
Please note! If you run two Verify Catalog jobs on the same client at the same time, the results
will certainly be incorrect. This is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog
This level causes Bacula to read the file attribute data written to the Volume from the last Job.
The file attribute data are compared to the values saved in the Catalog database and any
differences are reported. This is similar to the Catalog level except that instead of comparing the
disk file attributes to the catalog database, the attribute data written to the Volume is read and
compared to the catalog database. Although the attribute data including the signatures (MD5 or
SHA1) are compared the actual file data is not compared (it is not in the catalog).
Please note! If you run two Verify VolumeToCatalog jobs on the same client at the same time,
the results will certainly be incorrect. This is because the Verify VolumeToCatalog modifies the
Catalog database while running.

Bacula Storage Management System

The Job Resource 77

DiskToCatalog
This level causes Bacula to read the files as they currently are on disk, and to compare the
current file attributes with the attributes saved in the catalog from the last backup for the job
specified on the VerifyJob directive. This level differs from the Catalog level described above
by the fact that it compare not against a previous Verify job but against a previous backup. When
you run this level, you must supply the verify options on your Include statements. Those options
determine what attribute fields are compared.
This command can be very useful if you have disk problems because it will compare the current
state of your disk against the last successful backup, which may be several jobs.

Note, the current implementation (1.32c) does not identify files that have been deleted.

Verify Job = <Job−Resource−Name>
If you run a verify job without this directive, the last job run will be compared with the catalog, which
means that you must immediately follow a backup by a verify command. If you specify a Verify Job
Bacula will find the last job with that name that ran. This permits you to run all your backups, then run
Verify jobs on those that you wish to be verified (most often a VolumeToCatalog) so that the tape just
written is re−read.

JobDefs = <JobDefs−Resource−Name>
If a JobDefs−Resource−Name is specified, all the values contained in the named JobDefs resource will
be used as the defaults for the current Job. Any value that you explicitly define in the current Job
resource, will override any defaults specified in the JobDefs resource. The use of this directive permits
writing much more compact Job resources where the bulk of the directives are defined in one or more
JobDefs. This is particularly useful if you have many similar Jobs but with minor variations such as
different Clients. A simple example of the use of JobDefs is provided in the default bacula−dir.conf file.

Bootstrap = <bootstrap−file>
The Bootstrap directive specifies a bootstrap file that, if provided, will be used during Restore Jobs and
is ignored in other Job types. The bootstrap file contains the list of tapes to be used in a restore Job as
well as which files are to be restored. Specification of this directive is optional, and if specified, it is used
only for a restore job. In addition, when running a Restore job from the console, this value can be
changed.
If you use the Restore command in the Console program, to start a restore job, the bootstrap file will be
created automatically from the files you select to be restored.

For additional details of the bootstrap file, please see Restoring Files with the Bootstrap File chapter of
this manual.

Write Bootstrap = <bootstrap−file−specification>
The writebootstrap directive specifies a file name where Bacula will write a bootstrap file for each
Backup job run. Thus this directive applies only to Backup Jobs. If the Backup job is a Full save, Bacula
will erase any current contents of the specified file before writing the bootstrap records. If the Job is an
Incremental save, Bacula will append the current bootstrap record to the end of the file.
Using this feature, permits you to constantly have a bootstrap file that can recover the current state of
your system. Normally, the file specified should be a mounted drive on another machine, so that if your
hard disk is lost, you will immediately have a bootstrap record available. Alternatively, you should copy
the bootstrap file to another machine after it is updated.

If the bootstrap−file−specification begins with a vertical bar (|), Bacula will use the specification as the
name of a program to which it will pipe the bootstrap record. It could for example be a shell script that
emails you the bootstrap record.

Bacula Storage Management System

The Job Resource 78

For more details on using this file, please see the chapter entitled The Bootstrap File of this manual.

Client = <client−resource−name>
The Client directive specifies the Client (File daemon) that will be used in the current Job. Only a single
Client may be specified in any one Job. The Client runs on the machine to be backed up, and sends the
requested files to the Storage daemon for backup, or receives them when restoring. For additional details,
see the Client Resource section of this chapter. This directive is required.

FileSet = <FileSet−resource−name>
The FileSet directive specifies the FileSet that will be used in the current Job. The FileSet specifies
which directories (or files) are to be backed up, and what options to use (e.g. compression, ...). Only a
single FileSet resource may be specified in any one Job. For additional details, see the FileSet Resource
section of this chapter. This directive is required.

Messages = <messages−resource−name>
The Messages directive defines what Messages resource should be used for this job, and thus how and
where the various messages are to be delivered. For example, you can direct some messages to a log file,
and others can be sent by email. For additional details, see the Messages Resource Chapter of this
manual. This directive is required.

Pool = <pool−resource−name>
The Pool directive defines the pool of Volumes where your data can be backed up. Many Bacula
installations will use only the Default pool. However, if you want to specify a different set of Volumes
for different Clients or different Jobs, you will probably want to use Pools. For additional details, see the
Pool Resource section of this chapter. This resource is required.

Full Backup Pool = <pool−resource−name>
The Full Backup Pool specifies a Pool to be used for Full backups. It will override any Pool specification
during a Full backup. This resource is optional.

Differential Backup Pool = <pool−resource−name>
The Differential Backup Pool specifies a Pool to be used for Differential backups. It will override any
Pool specification during a Differentia backup. This resource is optional.

Incremental Backup Pool = <pool−resource−name>
The Incremental Backup Pool specifies a Pool to be used for Incremental backups. It will override any
Pool specification during a Incremental backup. This resource is optional.

Schedule = <schedule−name>
The Schedule directive defines what schedule is to be used for the Job. The schedule determines when
the Job will be automatically started and what Job level (i.e. Full, Incremental, ...) is to be run. This
directive is optional, and if left out, the Job can only be started manually. For additional details, see the
Schedule Resource Chapter of this manual. If a Schedule resource is specified, the job will be run
according to the schedule specified. If no Schedule resource is specified for the Job, the job must be
manually started using the Console program. Although you may specify only a single Schedule resource
for any one job, the Schedule resource may contain multiple Run directives, which allow you to run the
Job at many different times, and each run directive permits overriding the default Job Level Pool,
Storage, and Messages resources. This gives considerable flexibility in what can be done with a single
Job.

Storage = <storage−resource−name>
The Storage directive defines the name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource Chapter of this manual. This directive is required.

Max Start Delay = <time>
The time specifies maximum delay between the scheduled time and the actual start time for the Job. For
example, a job can be scheduled to run at 1:00am, but because other jobs are running, it may wait to run.
If the delay is set to 3600 (one hour) and the job has not begun to run by 2:00am, the job will be
canceled. This can be useful, for example, to prevent jobs from running during day time hours. The
default is 0 which indicates no limit.

Bacula Storage Management System

The Job Resource 79

Max Run Time = <time>
The time specifies maximum allowed time that a job may run, counted from the when the job starts (not
necessarily the same as when the job was scheduled). This directive is implemented only in version 1.33
and later.

Max Wait Time = <time>
The time specifies maximum allowed time that a job may block waiting for a resource (such as waiting
for a tape to be mounted, or waiting for the storage or file daemons to perform their duties), counted from
the when the job starts (not necessarily the same as when the job was scheduled). This directive is
implemented only in version 1.33 and later. Note, the implementation is not yet complete, so this
directive does not yet work correctly.

Prune Jobs = <yes/no>
Normally, pruning of Jobs from the Catalog is specified on a Client by Client basis in the Client resource
with the AutoPrune directive. If this directive is specified (not normally) and the value is yes, it will
override the value specified in the Client resource. The default is no.

Prune Files = <yes/no>
Normally, pruning of Files from the Catalog is specified on a Client by Client basis in the Client resource
with the AutoPrune directive. If this directive is specified (not normally) and the value is yes, it will
override the value specified in the Client resource. The default is no.

Prune Volumes = <yes/no>
Normally, pruning of Volumes from the Catalog is specified on a Client by Client basis in the Client
resource with the AutoPrune directive. If this directive is specified (not normally) and the value is yes, it
will override the value specified in the Client resource. The default is no.

Run Before Job = <command>
The specified command is run as an external program prior to running the current Job. Any output sent
by the job to standard output will be included in the Bacula job report. The command string must be a
valid program name or name of a shell script. This directive is not required, but if it is defined, and if the
exit code of the program run is non−zero, the current Bacula job will be canceled. In addition, the
command string is parsed then feed to the execvp() function, which means that the path will be searched
to execute your specified command, but there is no shell interpretation, as a consequence, if you
complicated commands or want any shell features such as redirection or piping, you must call a shell
script and do it inside that script.
Before submitting the specified command to the operating system, Bacula performs character substitution
of the following characters:

 %% = %
 %c = Client's name
 %d = Director's name
 %i = JobId
 %e = Job Exit Status
 %j = Unique Job name
 %l = Job Level
 %n = Job name
 %t = Job type
 %v = Volume name

As of version 1.30, Bacula checks the exit status of the RunBeforeJob program. If it is non−zero, the job
will be error terminated. Lutz Kittler has pointed out that this can be a simple way to modify your
schedules during a holiday. For example, suppose that you normally do Full backups on Fridays, but
Thursday and Friday are holidays. To avoid having to change tapes between Thursday and Friday when
no one is in the office, you can create a RunBeforeJob that returns a non−zero status on Thursday and
zero on all other days. That way, the Thursday job will not run, and on Friday the tape you insert on
Wednesday before leaving will be used.

Bacula Storage Management System

The Job Resource 80

Run After Job = <command>
The specified command is run as an external program after the current job terminates. This directive is
not required. The command string must be a valid program name or name of a shell script. If the exit
code of the program run is non−zero, the current Bacula job will terminate in error. Before submitting the
specified command to the operating system, Bacula performs character substitution as described above
for the Run Before Job directive.
An example of the use of this command is given in the Tips Chapter of this manual. As of version 1.30,
Bacula checks the exit status of the RunAfter program. If it is non−zero, the job will be terminated in
error.

Client Run Before Job = <command>
This command is the same as Run Before Job except that it is run on the client machine. The same
restrictions apply to Unix systems as noted above for the Run Before Job. In addition, for a Windows
client on version 1.33 and above, please take careful note that you must ensure a correct path to your
script, and the script or program can be a .com, .exe or a .bat file. However, if you specify a path, you
must also specify the full extension. Unix like commands will not work unless you have installed and
properly configured Cygwin in addition to and separately from Bacula.
Special Windows Considerations
The command can be anything that cmd.exe or command.com will recognize as a executable file.
Specifiying the executable's extention is optional, unless there is an ambiguity. (i.e. ls.bat, ls.exe)

The System %Path% will be searched for the command. (under the envrionment variable dialog you have
have both System Environment and User Environment, we believe that only the System environment will
be available to bacual−fd, if it is running as a service.)

System environment varaible can be called out using the %var% syntax and used as either part of the
command name or arguments.

When specifiying a full path to an executable if the path or executable name contains whitespace or
special characters they will need to be quoted. Arguments containing whitespace or special characters
will also have to be quoted.

ClientRunBeforeJob = "\"C:/Program Files/Software
 Vendor/Executable\" /arg1 /arg2 \"foo bar\""

The special characters &()[]{}^=;!'+,`~ will need to be quoted if part of a filename or argument.

If someone is logged in a blank "command" window running the commands will be present during the
execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines with the native Win32 File
daemon:

You might want the ClientRunBeforeJob directive to specify a .bat file which runs the actual
client−side commands, rather than trying to run (for example) regedit /e directly.

1.

The batch file should explicitly 'exit 0' on successful completion.2.
The path to the batch file should be specified in Unix form:3.

ClientRunBeforeJob = "c:/bacula/bin/systemstate.bat"

rather than DOS/Windows form:

Bacula Storage Management System

The Job Resource 81

ClientRunBeforeJob = "c:\bacula\bin\systemstate.bat" INCORRECT

Client Run After Job = <command>
This command is the same as Run After Job except that it is run on the client machine. Note, please see
the notes above in Client Run Before Job concerning Windows clients.

Rerun Failed Levels = <yes/no>
If this directive is set to yes (default no), and Bacula detects that a previous job at a higher level (i.e. Full
or Differential) has failed, the current job level will be upgraded to the higher level. This is particularly
useful for Laptops where they may often be unreachable, and if a prior Full save has failed, you wish the
very next backup to be a Full save rather than whatever level it is started as.

Spool Data = <yes/no>
If this directive is set to yes (default no), the Storage daemon will be requested to spool the data for this
Job to disk rather than write it directly to tape. Once all the data arrives or the spool file maximum sizes
are reached, the data will be despooled and written to tape. When this directive is set to yes, the Spool
Attributes is also automatically set to yes. Spooling data prevents tape shoe−shine (start and stop) during
Incremental saves. This option should not be used if you are writing to a disk file.

Spool Attributes = <yes/no>
The default is set to no, which means that the File attributes are sent by the Storage daemon to the
Director as they are stored on tape. However, if you want to avoid the possibility that database updates
will slow down writing to the tape, you may want to set the value to yes, in which case the Storage
daemon will buffer the File attributes and Storage coordinates to a temporary file in the Working
Directory, then when writing the Job data to the tape is completed, the attributes and storage coordinates
will be sent to the Director. The default is no.

Where = <directory>
This directive applies only to a Restore job and specifies a prefix to the directory name of all files being
restored. This permits files to be restored in a different location from which they were saved. If Where is
not specified or is set to backslash (/), the files will be restored to their original location. By default, we
have set Where in the example configuration files to be /tmp/bacula−restores. This is to prevent
accidental overwriting of your files.

Replace = <replace−option>
This directive applies only to a Restore job and specifies what happens when Bacula wants to restore a
file or directory that already exists. You have the following options for replace−option:
always

when the file to be restored already exists, it is deleted then replaced by the copy backed up.
ifnewer

if the backed up file (on tape) is newer than the existing file, the existing file is deleted and
replaced by the back up.

ifolder
if the backed up file (on tape) is older than the existing file, the existing file is deleted and replaced by
the back up.

never

if the backed up file already exists, Bacula skips restoring this file.
Prefix Links=<yes/no>

If a Where path prefix is specified for a recovery job, apply it to absolute links as well. The default is No. When
set to Yes then while restoring files to an alternate directory, any absolute soft links will also be modified to point
to the new alternate directory. Normally this is what is desired −− i.e. everything is self consistent. However, if
you wish to later move the files to their original locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs from the current Job resource that can run concurrently. Note,
this directive limits only Jobs with the same name as the resource in which it appears. Any other restrictions on

Bacula Storage Management System

The Job Resource 82

the maximum concurrent jobs such as in the Director, Client, or Storage resources will also apply in addition to
the limit specified here. The default is set to 1, but you may set it to a larger number. We strongly recommend
that you read the WARNING documented under Maximum Concurrent Jobs in the Director's resource.

Reschedule On Error = <yes/no>
If this directive is enabled, and the job terminates in error, the job will be rescheduled as determined by the
Reschedule Interval and Reschedule Times directives. If you cancel the job, it will not be rescheduled. The
default is no (i.e. the job will not be rescheduled).
This specification can be useful for portables, laptops, or other machines that are not always connected to the
network or switched on.

Reschedule Interval = <time−specification>
If you have specified Reschedule On Error = yes and the job terminates in error, it will be rescheduled after the
interval of time specified by time−specification. See the time specification formats in the Configure chapter for
details of time specifications. If no interval is specified, the job will not be rescheduled on error.

Reschedule Times = <count>
This directive specifies the maximum number of times to reschedule the job. If it is set to zero (the default) the
job will be rescheduled an indefinite number of times.

Priority = <number>
This directive permits you to control the order in which your jobs run by specifying a positive non−zero number.
The higher the number, the lower the job priority. Assuming you are not running concurrent jobs, all queued jobs
of priority 1 will run before queued jobs of priority 2 and so on, regardless of the original scheduling order.
The priority only affects waiting jobs that are queued to run, not jobs that are already running. If one or more jobs
of priority 2 are already running, and a new job is scheduled with priority 1, the currently running priority 2 jobs
must complete before the priority 1 job is run.

The default priority is 10.

If you want to run concurrent jobs, which is not recommended, you should keep these points in mind:

To run concurrent jobs, you must set Maximum Concurrent Jobs = 2 in 5 or 6 distinct places: in
bacula−dir.conf in the Director, the Job, the Client, the Storage resources; in bacula−fd in the
FileDaemon (or Client) resource, and in bacula−sd.conf in the Storage resource. If any one is missing, it
will throttle the jobs to one at a time.

•

Bacula concurrently runs jobs of only one priority at a time. It will not simultaneously run a priority 1
and a priority 2 job.

•

If Bacula is running a priority 2 job and a new priority 1 job is scheduled, it will wait until the running
priority 2 job terminates even if the Maximum Concurrent Jobs settings would otherwise allow two jobs
to run simultaneously.

•

Suppose that bacula is running a priority 2 job and new priority 1 job is scheduled and queued waiting for
the running priority 2 job to terminate. If you then start a second priority 2 job, the waiting priority 1 job
will prevent the new priority 2 job from running concurrently with the running priority 2 job. That is: as
long as there is a higher priority job waiting to run, no new lower priority jobs will start even if the
Maximum Concurrent Jobs settings would normally allow them to run. This ensures that higher priority
jobs will be run as soon as possible.

•

If you have several jobs of different priority, it is best not to start them at exactly the same time, because Bacula
must examine them one at a time. If by chance Bacula treats a lower priority first, then it will run before your
high priority jobs. To avoid this, start any higher priority a few seconds before lower ones. This insures that
Bacula will examine the jobs in the correct order, and that your priority scheme will be respected.

The following is an example of a valid Job resource definition:

Bacula Storage Management System

The Job Resource 83

Job {
 Name = "Minou"
 Type = Backup
 Level = Incremental # default
 Client = Minou
 FileSet="Minou Full Set"
 Storage = DLTDrive
 Pool = Default
 Schedule = "MinouWeeklyCycle"
 Messages = Standard
}

Bacula Storage Management System

The Job Resource 84

The JobDefs Resource
The JobDefs resource permits all the same directives that can appear in a Job resource. However, a JobDefs
resource does not create a Job, rather it can be referenced within a Job to provide defaults for that Job. This
permits you to concisely define several nearly identical Jobs, each one referencing a JobDefs resource which
contains the defaults. Only the changes from the defaults need be mentioned in each Job.

The JobDefs Resource 85

The Schedule Resource
The Schedule resource provides a means of automatically scheduling a Job as well as the ability to override the
default Level, Pool, Storage and Messages resources. If a Schedule resource is not referenced in a Job, the Job
may only be run manually. In general, you specify an action to be taken and when.

Schedule
Start of the Schedule directives. No Schedule resource is required, but you will need at least one if you
want Jobs to be automatically started.

Name = <name>
The name of the schedule being defined. The Name directive is required.

Run = <Job−overrides> <Date−time−specification>
The Run directive defines when a Job is to be run, and what overrides if any to apply. You may specify
multiple run directives within a Schedule resource. If you do, they will all be applied (i.e. multiple
schedules). If you have two Run directives that start at the same time, two Jobs will start at the same
time (well, within one second of each other).
The Job−overrides permit overriding the Level, the Storage, the Messages, and the Pool specifications
provided in the Job resource. In addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For example, you may specify a Messages
override for your Incremental backups that outputs messages to a log file, but for your weekly or monthly
Full backups, you may send the output by email by using a different Messages override.

Job−overrides are specified as: keyword=value where the keyword is Level, Storage, Messages, Pool,
FullPool, DifferentialPool, or IncrementalPool, and the value is as defined on the respective directive
formats for the Job resource. You may specify multiple Job−overrides on one Run directive by
separating them with one or more spaces or by separating them with a trailing comma. For example:

Level=Full
is all files in the FileSet whether or not they have changed.

Level=Incremental
is all files that have changed since the last backup.

Pool=Weekly
specifies to use the Pool named Weekly.

Storage=DLT_Drive
specifies to use DLT_Drive for the storage device.

Messages=Verbose
specifies to use the Verbose message resource for the Job.

FullPool=Full
specifies to use the Pool named Full if the job is a full backup, or is upgraded from another type
to a full backup.

DifferentialPool=Differential
specifies to use the Pool named Differential if the job is a differential backup.

IncrementalPool=Incremental
specifies to use the Pool named Incremental if the job is an incremental backup.

SpoolData=yes/no
tells Bacula to request the Storage daemon to spool data to a disk file before putting it on tape.

Date−time−specification determines when the Job is to be run. The specification is a repetition, and as a
default Bacula is set to run a job at the beginning of the hour of every hour of every day of every week of

The Schedule Resource 86

every month of every year. This is not normally what you want, so you must specify or limit when you
want the job to run. Any specification given is assumed to be repetitive in nature and will serve to
override or limit the default repetition. This is done by specifing masks or times for the hour, day of the
month, day of the week, week of the month, week of the year, and month when you want the job to run.
By specifying one or more of the above, you can define a schedule to repeat at almost any frequency you
want.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of these four items to
be specified, day is special in that you may either specify a day of the month such as 1, 2, ... 31, or you
may specify a day of the week such as Monday, Tuesday, ... Sunday. Finally, you may also specify a
week qualifier to restrict the schedule to the first, second, third, fourth, or fifth week of the month.

For example, if you specify only a day of the week, such as Tuesday the Job will be run every hour of
every Tuesday of every Month. That is the month and hour remain set to the defaults of every month
and all hours.

Note, by default with no other specification, your job will run at the beginning of every hour. If you wish
your job to run more than once in any given hour, you will need to specify multiple run specifications
each with a different minute.

The date/time to run the Job can be specified in the following way in pseudo−BNF:
<void−keyword> = on
<at−keyword> = at
<week−keyword> = 1st | 2nd | 3rd | 4th | 5th | first |
 second | third | forth | fifth
<wday−keyword> = sun | mon | tue | wed | thu | fri | sat |
 sunday | monday | tuesday | wednesday |
 thursday | friday
<week−of−year−keyword> = w00 | w01 | ... w52 | w53
<month−keyword> = jan | feb | mar | apr | may | jun | jul |
 aug | sep | oct | nov | dec | january |
 february | ... | december
<daily−keyword> = daily
<weekly−keyword> = weekly
<monthly−keyword> = monthly
<hourly−keyword> = hourly
<digit> = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<number> = <digit> | <digit><number>
<12hour> = 0 | 1 | 2 | ... 12
<hour> = 0 | 1 | 2 | ... 23
<minute> = 0 | 1 | 2 | ... 59
<day> = 1 | 2 | ... 31
<time> = <hour>:<minute> |
 <12hour>:<minute>am |
 <12hour>:<minute>pm
<time−spec> = <at−keyword> <time> |
 <hourly−keyword>
<date−keyword> = <void−keyword> <weekly−keyword>
<day−range> = <day>−<day>
<month−range> = <month−keyword>−<month−keyword>
<wday−range> = <wday−keyword>−<wday−keyword>
<range> = <day−range> | <month−range> |
 <wday−range>
<date> = <date−keyword> | <day> | <range>
<date−spec> = <date> | <date−spec>
<day−spec> = <day> | <wday−keyword> |
 <day−range> | <wday−range> |

Bacula Storage Management System

The Schedule Resource 87

 <daily−keyword>
<day−spec> = <day> | <wday−keyword> |
 <week−keyword> <wday−keyword>
<month−spec> = <month−keyword> | <month−range> |
 <monthly−keyword>
<date−time−spec> = <month−spec> <day−spec> <time−spec>

Note, the Week of Year specification wnn follows the ISO standard definition of the week of the year, where
Week 1 is the week in which the first Thursday of the year occurs, or alternatively, the week which contains the
4th of January. Weeks are numbered w01 to w53. w00 for Bacula is the week that precedes the first ISO week
(i.e. has the first few days of the year if any occur before Thursday). w00 is not defined by the ISO specification.
A week starts with Monday and ends with Sunday.

An example schedule resource that is named WeeklyCycle and runs a job with level full each Sunday at 1:05am
and an incremental job Monday through Saturday at 1:05am is:

Schedule {
 Name = "WeeklyCycle"
 Run = Level=Full sun at 1:05
 Run = Level=Incremental mon−sat at 1:05
}

An example of a possible monthly cycle is as follows:

Schedule {
 Name = "MonthlyCycle"
 Run = Level=Full Pool=Monthly 1st sun at 1:05
 Run = Level=Differential 2nd−5th sun at 1:05
 Run = Level=Incremental Pool=Daily mon−sat at 1:05
}

The first of every month:

Schedule {
 Name = "First"
 Run = Level=Full on 1 at 1:05
 Run = Level=Incremental on 2−31 at 1:05
}

Every 10 minutes:

Schedule {
 Name = "TenMinutes"
 Run = Level=Full hourly at 0:05
 Run = Level=Full hourly at 0:15
 Run = Level=Full hourly at 0:25
 Run = Level=Full hourly at 0:35
 Run = Level=Full hourly at 0:45
 Run = Level=Full hourly at 0:55
}

Technical Notes on Schedules

Internally Bacula keeps a schedule as a bit mask. There are six masks and a minute field to each schedule. The
masks are hour, day of the month (mday), month, day of the week (wday), week of the month (wom), and week

Bacula Storage Management System

Technical Notes on Schedules 88

of the year (woy). The schedule is initialized to have the bits of each of these masks set, which means that at the
beginning of every hour, the job will run. When you specify a month for the first time, the mask will be cleared
and the bit corresponding to your selected month will be selected. If you specify a second month, the bit
corresponding to it will also be added to the mask. Thus when Bacula checks the masks to see if the bits are set
corresponding to the current time, your job will run only in the two months you have set. Likewise, if you set a
time (hour), the hour mask will be cleared, and the hour you specify will be set in the bit mask and the minutes
will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by doing a show schedules command in
the Console program. Please note that the bit mask is zero based, and Sunday is the first day of the week (bit
zero).

Bacula Storage Management System

Technical Notes on Schedules 89

The FileSet Resource
The FileSet resource defines what files are to be included in a backup job. At least one FileSet resource is
required for each backup Job. It consists of a list of files or directories to be included, a list of files or directories
to be excluded and the various backup options such as compression, encryption, and signatures that are to be
applied to each file.

Any change to the list of the included files will cause Bacula to automatically create a new FileSet (defined by
the name and an MD5 checksum of the Include contents). Each time a new FileSet is created, Bacula will ensure
that the first backup is always a Full save.

FileSet
Start of the FileSet resource. At least one FileSet resource must be defined.

Name = <name>
The name of the FileSet resource. This directive is required.

Ignore FileSet Changes = <yes/no>
If this directive is set to yes, any changes you make to the FileSet Include or Exclude lists will be ignored
and not cause Bacula to immediately perform a Full backup. The default is no, in which case, if you
change the Include or Exclude, Bacula will force a Full backup to ensure that everything is properly
backed up. It is not recommended to set this directive to yes. This directive is available in Bacula version
1.35.4 or later.

Include { [Options {<file−options>} ...] <file−list> }
Options { <file−options> }
Exclude { <file−list> }

The Include resource must contain a list of directories and/or files to be processed in the backup job.
Normally, all files found in all subdirectories of any directory in the Include File list will be backed up.
The Include resource may also oner more Options resources that specify options such as compression to
be applied to all or any subset of the files found for backup.

There can be any number of Include resources within the FileSet, each having its own list of directories
or files to be backed up and the backup options defined by one or more Options resources. The file−list
consists of one file or directory name per line. Directory names should be specified without a trailing
slash.

You should always specify a full path for every directory and file that you list in the FileSet. In addition,
on Windows machines, you should always prefix the directory or filename with the drive specification
(e.g. c:/xxx) using Unix directory name separators (forward slash).

Bacula's default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bacula will not by default cross filesystems (or mount points in Unix parlance). This
means that if you specify the root partition (e.g. /), Bacula will save only the root partition and not any of
the other mounted filesystems. Similarly on Windows systems, you must explicitly specify each of the
drives you want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you will most likely
want to enclose each specification within double quotes particularly if the directory (or file) name
contains spaces. The df command on Unix systems will show you which mount points you must specify
to save everything. See below for an example.

Take special care not to include a directory twice or Bacula will backup the same files two times wasting
a lot of space on your archive device. Including a directory twice is very easy to do. For example:

The FileSet Resource 90

 Include {
 File = /
 File = /usr
 Options { compression=GZIP }
 }

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to be
backed up twice. In this case, on Bacula versions prior to 1.32f−5−09Mar04 due to a bug, you will not be
able to restore hard linked files that were backed up twice.

If you have used Bacula prior to version 1.34.3, you will note three things in the new FileSet syntax:

There is no equal sign (=) after the include and before the opening brace ({).1.
Each directory (or filename) to be backed up is preceded by a File =. Previously they were
simply listed on separate lines.

2.

The options that previously appeared on the Include line now must be specified within their own
Options resource.

3.

The Options resource is optional, but when specified, it will contain a list of keyword=value options to
be applied to the file−list. Multiple Options resources may be specified one after another. As the files are
found in the specified directories, the Options will applied to the filenames to determine if and how the
file should be backed up. The Options resources are applied in the order they are specified in the FileSet
until the first one that matches. An Options resource that does not contain a wild directive (wild−card
specification, see below) is assumed to match any filename. This is important to understand, because
once Bacula determine that the Options matches the file under consideration, that file will be saved
without looking at any other Options resources that may be present. This means that any wild cards must
appear before an Option resource without wild cards.

If for some reason, Bacula applies all the Options resources to a file under consideration for backup, but
there are no matches (generally because of wild cards that don't match), Bacula as a default will then
backup the file. This is quite logical if you consider the case of no Options, where you want everything to
be backed up. However, one additional point is that in the case that no match was found, Bacula will use
the options found in the last Options resource. As a consequence, if you want a particular set of "default"
options, you should put them in an Options resource after any other Options.

The directives within an Options resource may be one of the following:

compression=GZIP
All files saved will be software compressed using the GNU ZIP compression format. The
compression is done on a file by file basis by the File daemon. If there is a problem reading the
tape in a single record of a file, it will at most affect that file and none of the other files on the
tape. Normally this option is not needed if you have a modern tape drive as the drive will do its
own compression. In fact, if you specify software compression at the same time you have
hardware compression turned on, your files may actually take more space on the volume.
Software compression is very important if you are writing your Volumes to a file, and it can also
be helpful if you have a fast computer but a slow network.

Specifying GZIP uses the default compression level six (i.e. GZIP is identical to GZIP6). If you
want a different compression level (1 through 9), you can specify it by appending the level
number with no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum
compression but the fastest algorithm, and compression=GZIP9 would give the highest level of
compression, but requires more computation. According to the GZIP documentation,
compression levels greater than 6 generally give very little extra compression and are rather CPU

Bacula Storage Management System

The FileSet Resource 91

intensive.

signature=SHA1
An SHA1 signature will be computed for all The SHA1 algorithm is purported to be some what
slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four
more bytes than the MD5 signature. We strongly recommend that either this option or MD5 be
specified as a default for all files. Note, only one of the two options MD5 or SHA1 can be
computed for any file.

signature=MD5
An MD5 signature will be computed for all files saved. Adding this option generates about 5%
extra overhead for each file saved. In addition to the additional CPU time, the MD5 signature
adds 16 more bytes per file to your catalog. We strongly recommend that this option or the
SHA1 option be specified as a default for all files.

verify=<options>
The options letters specified are used when running a Verify Level=Catalog as well as the
DiskToCatalog level job. The options letters may be any combination of the following:
i

compare the inodes
p

compare the permission bits
n

compare the number of links
u

compare the user id
g

compare the group id
s

compare the size
a

compare the access time
m

compare the modification time (st_mtime)
c

compare the change time (st_ctime)
s

report file size decreases
5

compare the MD5 signature
1

compare the SHA1 signature

A useful set of general options on the Level=Catalog or Level=DiskToCatalog verify is pins5
i.e. compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes/no
If set to yes (the default), Bacula will remain on a single file system. That is it will not backup
file systems that are mounted on a subdirectory. If you wish to backup multiple filesystems, you
can explicitly list each file system you want saved. Otherwise, if you set the onefs option to no,
Bacula will backup all mounted file systems (i.e. traverse mount points) that are found within the
FileSet. Thus if you have NFS or Samba file systems mounted on a directory listed in your
FileSet, they will also be backed up. Normally, it is preferable to set onefs=yes and to explicitly

Bacula Storage Management System

The FileSet Resource 92

name each filesystem you want backed up. Explicitly naming the filesystems you want backed
up avoids the possibility of getting into a infinite loop recursing filesystems. See the example
below for more details.

portable=yes/no
If set to yes (default is no), the Bacula File daemon will backup Win32 files in a portable format,
but not all Win32 file attributes will be saved and restored. By default, this option is set to no,
which means that on Win32 systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, all the security and ownership attributes will be properly backed up (and
restored). However this format is not portable to other systems −− e.g. Unix, Win95/98/Me.
When backing up Unix systems, this option is ignored, and unless you have a specific need to
have portable backups, we recommend accept the default (no) so that the maximum information
concerning your files is saved.

recurse=yes/no
If set to yes (the default), Bacula will recurse (or descend) into all subdirectories found unless the
directory is explicitly excluded using an exclude definition. If you set recurse=no, Bacula will
save the subdirectory entries, but not descend into the subdirectories, and thus will not save the
files or directories contained in the subdirectories. Normally, you will want the default (yes).

sparse=yes/no
Enable special code that checks for sparse files such as created by ndbm. The default is no, so no
checks are made for sparse files. You may specify sparse=yes even on files that are not sparse
file. No harm will be done, but there will be a small additional overhead to check for buffers of
all zero, and a small additional amount of space on the output archive will be used to save the
seek address of each non−zero record read.
Restrictions: Bacula reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non−zero, the whole
buffer will be written to tape, possibly including some disk sectors (generally 4098 bytes) that
are all zero. As a consequence, Bacula's detection of sparse blocks is in 32K increments rather
than the system block size. If anyone considers this to be a real problem, please send in a request
for change with the reason. The sparse code was first implemented in version 1.27.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at
address zero, then 512 bytes at address 1 million. The operating system will allocate only two
blocks, and the empty space or hole will have nothing allocated. However, when you read the
sparse file and read the addresses where nothing was written, the OS will return all zeros as if the
space were allocated, and if you backup such a file, a lot of space will be used to write zeros to
the volume. Worse yet, when you restore the file, all the previously empty space will now be
allocated using much more disk space. By turning on the sparse option, Bacula will specifically
look for empty space in the file, and any empty space will not be written to the Volume, nor will
it be restored. The price to pay for this is that Bacula must search each block it reads before
writing it. On a slow system, this may be important. If you suspect you have sparse files, you
should benchmark the difference or set sparse for only those files that are really sparse.

readfifo=yes/no
If enabled, tells the Client to read the data on a backup and write the data on a restore to any
FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program
already running that writes into the FIFO for a backup or reads from the FIFO on a restore. This
can be accomplished with the RunBeforeJob directive. If this is not the case, Bacula will hang
indefinitely on reading/writing the FIFO. When this is not enabled (default), the Client simply
saves the directory entry for the FIFO.

mtimeonly=yes/no

Bacula Storage Management System

The FileSet Resource 93

If enabled, tells the Client that the selection of files during Incremental and Differential backups
should based only on the st_mtime value in the stat() packet. The default is no which means that
the selection of files to be backed up will be based on both the st_mtime and the st_ctime values.
In general, it is not recommended to use this option.

keepatime=yes/no
The default is no. When enabled, Bacula will reset the st_atime (access time) field of files that it
backs up to their value prior to the backup. This option is not generally recommended as there
are very few programs that use st_atime, and the backup overhead is increased because of the
additional system call necessary to reset the times. (I'm not sure this works on Win32).

wild=<string>
Specifies a wild−card string to be applied to the Files. Note, if Exclude is not enabled, the
wild−card will select which files are to be included. If Exclude=yes is specified, the wild−card
will select which files are to be excluded. Multiple wild−card directives may be specified, and
they will be applied in turn until the first one that matches.

regex=<string>
Specifies a POSIX extended regular expression to be applied to the Files. This directive is
available in version 1.35 and later. If Exclude is not enabled, the regex will select which files are
to be included. If Exclude=yes is specified, the regex will select which files are to be excluded.
Multiple regex directives may be specified within an Options resource, and they will be applied
in turn until the first one that matches.

exclude=yes/no
The default is no. When enabled, any files matched within the Options will be excluded from the
backup.

aclsupport=yes/no
The default is no. If this option is set to yes, and you have the POSIX libacl installed on your
system, Bacula will backup the file and directory UNIX Access Control Lists (ACL) as defined
in IEEE Std 1003.1e draft 17 and "POSIX.1e" (abandoned). This feature is available on UNIX
only and depends on the ACL library. Bacula is automatically compiled with ACL support if the
libacl library is installed on your system (shown in config.out). While restoring the files Bacula
will try to restore the ACLs, if there is no ACL support available on the system, Bacula restores
the files and directories but not the ACL information. Please note, if you backup an EXT3 or
XFS filesystem with ACLs, then you restore them to a different filesystem (perhaps reiserfs) that
does not have ACLs, the ACLs will be ignored.

<file−list> is a list of directory and/or filename names specified with a File = directive. To include
names containing spaces, enclose the name between double−quotes.

There are a number of special cases when specifying directories and files in a file−list. They are:

Any name preceded by an at−sign (@) is assumed to be the name of a file, which contains a list
of files each preceded by a "File =". The named file is read once when the configuration file is
parsed during the Director startup. Note, that the file is read on the Director's machine and not on
the Client's. In fact, the @filename can appear anywhere within the conf file where a token
would be read, and the contents of the named file will be logically inserted in the place of the
@filename. What must be in the file depends on the location the @filename is specified in the
conf file.

♦

Any name beginning with a vertical bar (|) is assumed to be the name of a program. This
program will be executed on the Director's machine at the time the Job starts (not when the
Director reads the configuration file), and any output from that program will be assumed to be a
list of files or directories, one per line, to be included. This allows you to have a job that for
example includes all the local partitions even if you change the partitioning by adding a disk. In
general, you will need to prefix your command or commands with a sh −c so that they are

♦

Bacula Storage Management System

The FileSet Resource 94

invoked by a shell. This will not be the case if you are invoking a script as in the second example
below. Also, you must take care to escape (precede with a \) wild−cards, shell character, and to
ensure that any spaces in your command are escaped as well. If you use a single quotes (') within
a double quote ("), Bacula will treat everything between the single quotes as one field so it will
not be necessary to escape the spaces. In general, getting all the quotes and escapes correct is a
real pain as you can see by the next example. As a consequence, it is often easier to put
everything in a file and simply use the file name within Bacula. In that case the sh −c will not be
necessary providing the first line of the file is #!/bin/sh.

As an example:

Include {
 Options { signature = SHA1 }
 File = "|sh −c 'df −l | grep \"^/dev/hd[ab]\" | grep −v \".*/tmp\" \
 | awk \"{print \\$6}\"'"
}

will produce a list of all the local partitions on a RedHat Linux system. Note, the above line was
split, but should normally be written on one line. Quoting is a real problem because you must
quote for Bacula which consists of preceding every \ and every " with a \, and you must also
quote for the shell command. In the end, it is probably easier just to execute a small file with:

Include {
 Options {
 signature=MD5
 }
 File = "|my_partitions"
}

where my_partitions has:

#!/bin/sh
df −l | grep "^/dev/hd[ab]" | grep −v ".*/tmp" \
 | awk "{print \$6}"

If the vertical bar (|) in front of my_partitions is preceded by a backslash as in \|, the program will
be executed on the Client's machine instead of on the Director's machine −− (this is implemented
but not thoroughly tested, and is reported to work on Windows). Please note that if the filename
is given within quotes, you will need to use two slashes. An example, provided by John
Donagher, that backs up all the local UFS partitions on a remote system is:

FileSet {
 Name = "All local partitions"
 Include {
 Options { signature=SHA1; onefs=yes; }
 File = "\\|bash −c \"df −klF ufs | tail +2 | awk '{print \$6}'\""
 }
}

Note, it requires two backslash characters after the double quote (one preserves the next one). If
you are a Linux user, just change the ufs to ext3 (or your preferred filesystem type) and you will
be in business.
Any file−list item preceded by a less−than sign (<) will be taken to be a file. This file will be
read on the Director's machine at the time the Job starts, and the data will be assumed to be a list

♦

Bacula Storage Management System

The FileSet Resource 95

of directories or files, one per line, to be included. This feature allows you to modify the external
file and change what will be saved without stopping and restarting Bacula as would be necessary
if using the @ modifier noted above.

If you precede the less−than sign (<) with a backslash as in \<, the file−list will be read on the
Client machine instead of on the Director's machine. Please note that if the filename is given
within quotes, you will need to use two slashes.

If you explicitly specify a block device such as /dev/hda1, then Bacula (starting with version
1.28) will assume that this is a raw partition to be backed up. In this case, you are strongly urged
to specify a sparse=yes include option, otherwise, you will save the whole partition rather than
just the actual data that the partition contains. For example:

♦

Include {
 Options { signature=MD5; sparse=yes }
 File = /dev/hd6
}

will backup the data in device /dev/hd6.

Ludovic Strappazon has pointed out that this feature can be used to backup a full Microsoft
Windows disk. Simply boot into the system using a Linux Rescue disk, then load a statically
linked Bacula as described in the Disaster Recovery Using Bacula chapter of this manual. Then
save the whole disk partition. In the case of a disaster, you can then restore the desired partition
by again booting with the rescue disk and doing a restore of the partition.

If you explicitly specify a FIFO device name (created with mkfifo), and you add the option
readfifo=yes as an option, Bacula will read the FIFO and back its data up to the Volume. For
example:

♦

Include {
 Options {
 signature=SHA1
 readfifo=yes
 }
 File = /home/abc/fifo
}

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it, and store all data thus
obtained on the Volume. Please note, you must have a process on the system that is writing into
the fifo, or Bacula will hang, and after one minute of waiting, Bacula will give up and go on to
the next file. The data read can be anything since Bacula treats it as a stream.

This feature can be an excellent way to do a "hot" backup of a very large database. You can use
the RunBeforeJob to create the fifo and to start a program that dynamically reads your database
and writes it to the fifo. Bacula will then write it to the Volume.

During the restore operation, the inverse is true, after Bacula creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that
there is a reader program or Bacula will block, and after one minute, Bacula will time out the
write to the fifo and move on to the next file.

Bacula Storage Management System

The FileSet Resource 96

The following is an example of a valid FileSet resource definition. Note, the first Include pulls in the contents of
the file /etc/backup.list when Bacula is started (i.e. the @).

FileSet {
 Name = "Full Set"
 Include {
 Options {
 Compression=GZIP
 signature=SHA1
 Sparse = yes
 }
 File = @/etc/backup.list
 }
 Include {
 Options {
 wild = *.o
 Exclude = yes
 }
 File = /root/myfile
 File = /usr/lib/another_file
 }
}

Note, in the above example, all the files contained in /etc/backup.list will be compressed with GZIP compression,
an SHA1 signature will be computed on the file's contents (its data), and sparse file handling will apply.

The two directories /root/myfile and /usr/lib/another_file will also be saved without any options, but all files in
those directories with the extension .o will be excluded.

Suppose you want to save everything except /tmp on your system. Doing a df command, you get the following
output:

[kern@rufus k]$ df
Filesystem 1k−blocks Used Available Use% Mounted on
/dev/hda5 5044156 439232 4348692 10% /
/dev/hda1 62193 4935 54047 9% /boot
/dev/hda9 20161172 5524660 13612372 29% /home
/dev/hda2 62217 6843 52161 12% /rescue
/dev/hda8 5044156 42548 4745376 1% /tmp
/dev/hda6 5044156 2613132 2174792 55% /usr
none 127708 0 127708 0% /dev/shm
//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou
lmatou:/ 1554264 215884 1258056 15% /mnt/matou
lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home
lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr
lpmatou:/ 995116 484112 459596 52% /mnt/pmatou
lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home
lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr
deuter:/ 4806936 97684 4465064 3% /mnt/deuter
deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home
deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

If you specify only / in your Include list, Bacula will only save the Filesystem /dev/hda5. To save all file systems
except /tmp with out including any of the Samba or NFS mounted systems, and explicitly excluding a /tmp,
/proc, .journal, and .autofsck, which you will not want to be saved and restored, you can use the following:

FileSet {

Bacula Storage Management System

The FileSet Resource 97

 Name = Include_example
 Include {
 Options {
 wild = /proc
 wild = /tmp
 wild = \.journal
 wild = \.autofsck
 exclude = yes
 }
 File = /
 File = /boot
 File = /home
 File = /rescue
 File = /usr
 }
}

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed in
the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so that it is no
longer in its own partition.

Please be aware that allowing Bacula to traverse or change file systems can be very dangerous. For example,
with the following:

FileSet {
 Name = "Bad example"
 Include {
 Options { onefs=no }
 File = /mnt/matou
 }
}

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bacula will
traverse file systems. Now if /mnt/matou has the current machine's file systems mounted, as is often the case,
you will get yourself into a recursive loop and the backup will never end.

The following FileSet definition will backup a raw partition:

FileSet {
 Name = "RawPartition"
 Include {
 Options { sparse=yes }
 File = /dev/hda2
 }
}

While backing up and restoring a raw partition, you should ensure that no other process including the system is
writing to that partition. As a precaution, you are strongly urged to ensure that the raw partition is not mounted or
is mounted read−only. If necessary, this can be done using the RunBeforeJob directive.

Windows Considerations for FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in c:).
However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish to include
a quote in a file name, precede the quote with a backslash (\\). For example you might use the following for a

Bacula Storage Management System

Windows Considerations for FileSets 98

Windows machine to backup the "My Documents" directory:

FileSet {
 Name = "Windows Set"
 Include {
 Options {
 wild = *.obj
 wild = *.exe
 exclude = yes
 }
 File = "c:/My Documents"
 }
}

For exclude lists to work correctly on Windows, you must observe the following rules:

Filenames are case sensitive, so you must use the correct case.•
To exclude a directory, you must not have a trailing slash on the directory name.•
If you have spaces in your filename, you must enclose the entire name in double−quote characters (").
Trying to use a backslash before the space will not work.

•

If you are using the old Exclude syntax (noted below), you may not specify a drive letter in the exclude.
The new syntax noted above should work fine including driver letters.

•

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes or
excludes to work, you might want to try using the estimate job=xxx listing command documented in the
Console chapter of this manual.

On Win32 systems, if you move a directory or file or rename a file into the set of files being backed up, and a
Full backup has already been made, Bacula will not know there are new files to be saved during an Incremental
or Differential backup (blame Microsoft, not me). To avoid this problem, please copy any new directory or files
into the backup area. If you do not have enough disk to copy the directory or files, move them, but then initiate a
Full backup.

Excluding Files and Directories

You may also include full filenames or directory names in addition to using wild−cards and Exclude=yes in the
Options resource as specified above by simply including the files to be excluded in an Exclude resource within
the FileSet. For example:

FileSet {
 Name = Exclusion_example
 Include {
 Options {
 Signature = SHA1
 }
 File = /
 File = /boot
 File = /home
 File = /rescue
 File = /usr
 }
 Exclude {
 File = /proc
 File = /tmp
 File = .journal

Bacula Storage Management System

Excluding Files and Directories 99

 File = .autofsck
 }

}

A Windows Example FileSet

The following example was contributed by Phil Stracchino:

This is my Windows 2000 fileset:

FileSet {
 Name = "Windows 2000 Full Set"
 Include {
 Options {
 signature=MD5
 }
 File = c:/
 }
 Exclude {
Most of these files are excluded not because we don't want
them, but because Win2K won't allow them to be backed up
except via proprietary Win32 API calls.
 File = "/Documents and Settings/*/Application Data/*/Profiles/
 //Cache/*"
 File = "/Documents and Settings/*/Local Settings/Application Data/
 Microsoft/Windows/[Uu][Ss][Rr][Cc][Ll][Aa][Ss][Ss].*"
 File = "/Documents and Settings/*/[Nn][Tt][Uu][Ss][Ee][Rr].*"
 File = "/Documents and Settings/*/Cookies/*"
 File = "/Documents and Settings/*/Local Settings/History/*"
 File = "/Documents and Settings/*/Local Settings/
 Temporary Internet Files/* File = "
 File = "/Documents and Settings/*/Local Settings/Temp/*"
 File = "/WINNT/CSC"
 File = "/WINNT/security/logs/scepol.log"
 File = "/WINNT/system32/config/*"
 File = "/WINNT/msdownld.tmp/*"
 File = "/WINNT/Internet Logs/*"
 File = "/WINNT/$Nt*Uninstall*"
 File = "/WINNT/Temp/*"
 File = "/temp/*"
 File = "/tmp/*"
 File = "/pagefile.sys"
 }

}

Note, the three line of the above Exclude were split to fit on the document page, they should be written on a
single line in real use.

Bacula Storage Management System

A Windows Example FileSet 100

The Old FileSet Resource
The old pre−version 1.34.3 FileSet Resource has been deprecated but will still work. You are encouraged to
convert to using the new form since the old code will be eventually removed. You can find the documentation of
the old FileSet directives in a special old FileSet chapter.

Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will work correctly,
you can test it by using the estimate command in the Console program. See the estimate command in the
Console chapter of this manual.

Windows NTFS Naming Considerations

NTFS filenames containing Unicode characters (i.e. > 0xFF) cannot be explicitly named at the moment. You
must include such names by naming a higher level directory or a drive letter that does not contain Unicode
characters.

The Old FileSet Resource 101

The Client Resource
The Client resource defines the attributes of the Clients that are served by this Director; that is the machines that
are to be backed up. You will need one Client resource definition for each machine to be backed up.

Client (or FileDaemon)
Start of the Client directives.

Name = <name>
The client name which will be used in the Job resource directive or in the console run command. This
directive is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bacula File server daemon. This directive is required.

FD Port = <port−number>
Where the port is a port number at which the Bacula File server daemon can be contacted. The default is
9102.

Catalog = <Catalog−resource−name>
This specifies the name of the catalog resource to be used for this Client. This directive is required.

Password = <password>
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this Director.
This directive is required. If you have either /dev/random bc on your machine, Bacula will generate a
random password during the configuration process, otherwise it will be left blank.

File Retention = <time−period−specification>
The File Retention directive defines the length of time that Bacula will keep File records in the Catalog
database. When this time period expires, and if AutoPrune is set to yes Bacula will prune (remove) File
records that are older than the specified File Retention period. Note, this affects only records in the
catalog database. It does not effect your archive backups.
File records may actually be retained for a shorter period than you specify on this directive if you specify
either a shorter Job Retention or shorter Volume Retention period. The shortest retention period of the
three takes precedence. The time may be expressed in seconds, minutes, hours, days, weeks, months,
quarters, or years. See the Configuration chapter of this manual for additional details of time
specification.

The default is 60 days.

Job Retention = <time−period−specification>
The Job Retention directive defines the length of time that Bacula will keep Job records in the Catalog
database. When this time period expires, and if AutoPrune is set to yes Bacula will prune (remove) Job
records that are older than the specified File Retention period. As with the other retention periods, this
affects only records in the catalog and not data in your archive backup.
If a Job record is selected for pruning, all associated File and JobMedia records will also be pruned
regardless of the File Retention period set. As a consequence, you normally will set the File retention
period to be less than the Job retention period. The Job retention period can actually be less than the
value you specify here if you set the Volume Retention directive in the Pool resource to a smaller
duration. This is because the Job retention period and the Volume retention period are independently
applied, so the smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days, weeks, months, quarters, or years.
See the Configuration chapter of this manual for additional details of time specification.

The Client Resource 102

The default is 180 days.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically apply the File
retention period and the Job retention period for the Client at the end of the Job. If you set AutoPrune =
no, pruning will not be done, and your Catalog will grow in size each time you run a Job. Pruning affects
only information in the catalog and not data stored in the backup archives (on Volumes).

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs with the current Client that can run concurrently. Note,
this directive limits only Jobs for Clients with the same name as the resource in which it appears. Any
other restrictions on the maximum concurrent jobs such as in the Director, Job, or Storage resources will
also apply in addition to any limit specified here. The default is set to 1, but you may set it to a larger
number. We strongly recommend that you read the WARNING documented under Maximum Concurrent
Jobs in the Director's resource.

*Priority = <number>
The number specifies the priority of this client relative to other clients that the Director is processing
simultaneously. The priority can range from 1 to 1000. The clients are ordered such that the smaller
number priorities are performed first (not currently implemented).

The following is an example of a valid Client resource definition:

Client {
 Name = Minimatou
 Address = minimatou
 Catalog = MySQL
 Password = very_good
}

Bacula Storage Management System

The Client Resource 103

The Storage Resource
The Storage resource defines which Storage daemons are available for use by the Director.

Storage
Start of the Storage resources. At least one storage resource must be specified.

Name = <name>
The name of the storage resource. This name appears on the Storage directive specified in the Job
directive and is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or an IP address. Please note that the
<address> as specified here will be transmitted to the File daemon who will then use it to contact the
Storage daemon. Hence, it is not, a good idea to use localhost as the name but rather a fully qualified
machine name or an IP address. This directive is required.

SD Port = <port>
Where port is the port to use to contact the storage daemon for information and to start jobs. This same
port number must appear in the Storage resource of the Storage daemon's configuration file. The default
is 9103.

Password = <password>
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon's configuration file. This
directive is required. If you have either /dev/random bc on your machine, Bacula will generate a random
password during the configuration process, otherwise it will be left blank.

Device = <device−name>
This directive specifies the name of the device to be used to for the storage. This name is not the physical
device name, but the logical device name as defined on the Name directive contained in the Device
resource definition of the Storage daemon configuration file. You can specify any name you would like
(even the device name if you prefer) up to a maximum of 127 characters in length. The physical device
name associated with this device is specified in the Storage daemon configuration file (as Archive
Device). Please take care not to define two different Storage resource directives in the Director that point
to the same Device in the Storage daemon. Doing so may cause the Storage daemon to block (or hang)
attempting to open the same device that is already open. This directive is required.

Media Type = <MediaType>
This directive specifies the Media Type to be used to store the data. This is an arbitrary string of
characters up to 127 maximum that you define. It can be anything you want. However, it is best to make
it descriptive of the storage media (e.g. File, DAT, "HP DLT8000", 8mm, ...). In addition, it is essential
that you make the Media Type specification unique for each storage media type. If you have two DDS−4
drives that have incompatible formats, or if you have a DDS−4 drive and a DDS−4 autochanger, you
almost certainly should specify different Media Types. During a restore, assuming a DDS−4 Media
Type is associated with the Job, Bacula can decide to use any Storage daemon that support Media Type
DDS−4 and on any drive supports it. If you want to tie Bacula to using a single Storage daemon or drive,
you must specify a unique Media Type for that drive.
The MediaType specified here, must correspond to the Media Type specified in the Device resource of
the Storage daemon configuration file. This directive is required, and it is used by the Director and the
Storage daemon to ensure that a Volume automatically selected from the Pool corresponds to the
physical device. If a Storage daemon handles multiple devices (e.g. will write to various file Volumes on
different partitions), this directive allows you to specify exactly which device.

As mentioned above, the value specified in the Director's Storage resource must agree with the value
specified in the Device resource in the Storage daemon's configuration file. It is also an additional check

The Storage Resource 104

so that you don't try to write data for a DLT onto an 8mm device.

Autochanger = <yes/no>
If you specify yes for this command (the default is no), when you use the label command or the add
command to create a new Volume, Bacula will also request the Autochanger Slot number. This
simplifies creating database entries for Volumes in an autochanger. If you forget to specify the Slot, the
autochanger will not be used. However, you may modify the Slot associated with a Volume at any time
by using the update volume command in the console program. When autochanger is enabled, the
algorithm used by Bacula to search for available volumes will be modified to consider only Volumes that
are known to be in the autochanger's magazine. If no in changer volume is found, Bacula will attempt
recycling, pruning, ..., and if still no volume is found, Bacula will search for any volume whether or not
in the magazine. By privileging in changer volumes, this procedure minimizes operator intervention. The
default is no.
For the autochanger to be used, you must also specify Autochanger = yes in the Device Resource in the
Storage daemon's configuration file as well as other important Storage daemon configuration
information. Please consult the Using Autochangers manual of this chapter for the details of using
autochangers.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs with the current Storage resource that can run
concurrently. Note, this directive limits only Jobs for Jobs using this Storage daemon. Any other
restrictions on the maximum concurrent jobs such as in the Director, Job, or Client resources will also
apply in addition to any limit specified here. The default is set to 1, but you may set it to a larger number.
We strongly recommend that you read the WARNING documented under Maximum Concurrent Jobs in
the Director's resource.
While it is possible to set the Director's, Job's, or Client's maximum concurrent jobs greater than one, you
should take great care in setting the Storage daemon's greater than one. By keeping this directive set to
one, you will avoid having two jobs simultaneously write to the same Volume. Although this is
supported, it is not currently recommended.

The following is an example of a valid Storage resource definition:

Definition of tape storage device
Storage {
 Name = DLTDrive
 Address = lpmatou
 Password = storage_password # password for Storage daemon
 Device = "HP DLT 80" # same as Device in Storage daemon
 Media Type = DLT8000 # same as MediaType in Storage daemon
}

Bacula Storage Management System

The Storage Resource 105

The Pool Resource
The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bacula to write the data. By
configuring different Pools, you can determine which set of Volumes (media) receives the backup data. This
permits, for example, to store all full backup data on one set of Volumes and all incremental backups on another
set of Volumes. Alternatively, you could assign a different set of Volumes to each machine that you backup. This
is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs, Retention Period,
Recycle flag, ...) that will be given to a Volume when it is created. This avoids the need for you to answer a large
number of questions when labeling a new Volume. Each of these attributes can later be changed on a Volume by
Volume basis using the update command in the console program. Note that you must explicitly specify which
Pool Bacula is to use with each Job. Bacula will not automatically search for the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go to a single set of Volumes. In this
case, you will probably only use the Default Pool. If your backup strategy calls for you to mount a different tape
each day, you will probably want to define a separate Pool for each day. For more information on this subject,
please see the Backup Strategies chapter of this manual.

To use a Pool, there are three distinct steps. First the Pool must be defined in the Director's configuration file.
Then the Pool must be written to the Catalog database. This is done automatically by the Director each time that
it starts, or alternatively can be done using the create command in the console program. Finally, if you change
the Pool definition in the Director's configuration file and restart Bacula, the pool will be updated alternatively
you can use the update pool console command to refresh the database image. It is this database image rather than
the Director's resource image that is used for the default Volume attributes. Note, for the pool to be automatically
created or updated, it must be explicitly referenced by a Job resource.

Next the physical media must be labeled. The labeling can either be done with the label command in the console
program or using the btape program. The preferred method is to use the label command in the console program.

Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used by Bacula they
must be of the same Media Type as the archive device specified for the job (i.e. if you are going to back up to a
DLT device, the Pool must have DLT volumes defined since 8mm volumes cannot be mounted on a DLT drive).
The Media Type has particular importance if you are backing up to files. When running a Job, you must
explicitly specify which Pool to use. Bacula will then automatically select the next Volume to use from the Pool,
but it will ensure that the Media Type of any Volume selected from the Pool is identical to that required by the
Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes, they will automatically be added to
the Pool, so this last step is not normally required.

It is also possible to add Volumes to the database without explicitly labeling the physical volume. This is done
with the add console command.

As previously mentioned, each time Bacula starts, it scans all the Pools associated with each Catalog, and if the
database record does not already exist, it will be created from the Pool Resource definition. Bacula probably
should do an update pool if you change the Pool definition, but currently, you must do this manually using the
update pool command in the Console program.

The Pool Resource 106

The Pool Resource defined in the Director's configuration file (bacula−dir.conf) may contain the following
directives:

Pool
Start of the Pool resource. There must be at least one Pool resource defined.

Name = <name>
The name of the pool. For most applications, you will use the default pool name Default. This directive
is required.

Number of Volumes = <number>
This directive specifies the number of volumes (tapes or files) contained in the pool. Normally, it is
defined and updated automatically by the Bacula catalog handling routines.

Maximum Volumes = <number>
This directive specifies the maximum number of volumes (tapes or files) contained in the pool. This
directive is optional, if omitted or set to zero, any number of volumes will be permitted. In general, this
directive is useful for Autochangers where there is a fixed number of Volumes, or for File storage where
you wish to ensure that the backups made to disk files do not become too numerous or consume too
much space.

Pool Type = <type>
This directive defines the pool type, which corresponds to the type of Job being run. It is required and
may be one of the following:

Backup◊
*Archive◊
*Cloned◊
*Migration◊
*Copy◊
*Save◊

Use Volume Once = <yes/no>
This directive if set to yes specifies that each volume is to be used only once. This is most useful when
the Media is a file and you want a new file for each backup that is done. The default is no (i.e. use
volume any number of times). This directive will most likely be phased out (deprecated), so you are
recommended to use Maximum Volume Jobs = 1 instead.
Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Maximum Volume Jobs = <positive−integer>
This directive specifies the maximum number of Jobs that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of Jobs backed up to the Volume equals
positive−integer the Volume will be marked Used. When the Volume is marked Used it can no longer
be used for appending Jobs, much like the Full status but it can be recycled if recycling is enabled. By
setting MaximumVolumeJobs to one, you get the same effect as setting UseVolumeOnce = yes.
Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Maximum Volume Files = <positive−integer>
This directive specifies the maximum number of files that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of files written to the Volume equals
positive−integer the Volume will be marked Used. When the Volume is marked Used it can no longer

Bacula Storage Management System

The Pool Resource 107

be used for appending Jobs, much like the Full status but it can be recycled if recycling is enabled. This
value is checked and the Used status is set only at the end of a job that writes to the particular volume.
Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Maximum Volume Bytes = <size>
This directive specifies the maximum number of bytes that can be written to the Volume. If you specify
zero (the default), there is no limit except the physical size of the Volume. Otherwise, when the number
of bytes written to the Volume equals size the Volume will be marked Used. When the Volume is
marked Used it can no longer be used for appending Jobs, much like the Full status but it can be recycled
if recycling is enabled. This value is checked and the Used status set while the job is writing to the
particular volume.
Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Volume Use Duration = <time−period−specification>
The Volume Use Duration directive defines the time period that the Volume can be written beginning
from the time of first data write to the Volume. If the time−period specified is zero (the default), the
Volume can be written indefinitely. Otherwise, when the time period from the first write to the volume
(the first Job written) exceeds the time−period−specification, the Volume will be marked Used, which
means that no more Jobs can be appended to the Volume, but it may be recycled if recycling is enabled.
You might use this directive, for example, if you have a Volume used for Incremental backups, and
Volumes used for Weekly Full backups. Once the Full backup is done, you will want to use a different
Incremental Volume. This can be accomplished by setting the Volume Use Duration for the Incremental
Volume to six days. I.e. it will be used for the 6 days following a Full save, then a different Incremental
volume will be used.

This value is checked and the Used status is set only at the end of a job that writes to the particular
volume, which means that even though the use duration may have expired, the catalog entry will not be
updated until the next job that uses this volume is run.

Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Catalog Files = <yes/no>
This directive defines whether or not you want the names of the files that were saved to be put into the
catalog. The default is yes. The advantage of specifying Catalog Files = No is that you will have a
significantly smaller Catalog database. The disadvantage is that you will not be able to produce a Catalog
listing of the files backed up for each Job (this is often called Browsing). Also, without the File entries in
the catalog, you will not be able to use the Console restore command nor any other command that
references File entries.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically apply the Volume
Retention period when new Volume is needed and no appendable Volumes exist in the Pool. Volume
pruning causes expired Jobs (older than the Volume Retention period) to be deleted from the Catalog

Bacula Storage Management System

The Pool Resource 108

and permits possible recycling of the Volume.
Volume Retention = <time−period−specification>

The Volume Retention directive defines the length of time that Bacula will keep Job records associated
with the Volume in the Catalog database. When this time period expires, and if AutoPrune is set to yes
Bacula will prune (remove) Job records that are older than the specified Volume Retention period. All
File records associated with pruned Jobs are also pruned. The time may be specified as seconds, minutes,
hours, days, weeks, months, quarters, or years. The Volume Retention applied independently to the Job
Retention and the File Retention periods defined in the Client resource. This means that the shorter
period is the one that applies. Note, that when the Volume Retention period has been reached, it will
prune both the Job and the File records.
The default is 365 days. Note, this directive sets the default value for each Volume entry in the Catalog
when the Volume is created. The value in the catalog may be later individually changed for each Volume
using the Console program.

By defining multiple Pools with different Volume Retention periods, you may effectively have a set of
tapes that is recycled weekly, another Pool of tapes that is recycled monthly and so on. However, one
must keep in mind that if your Volume Retention period is too short, it may prune the last valid Full
backup, and hence until the next Full backup is done, you will not have a complete backup of your
system, and in addition, the next Incremental or Differential backup will be promoted to a Full backup.
As a consequence, the minimum Volume Retention period should be at twice the interval of your Full
backups. This means that if you do a Full backup once a month, the minimum Volume retention period
should be two months.

Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Recycle = <yes/no>
This directive specifies the default for recycling Purged Volumes. If it is set to yes and Bacula needs a
volume but finds none that are appendable, it will search for Purged Volumes (i.e. volumes with all the
Jobs and Files expired and thus deleted from the Catalog). If the Volume is recycled, all previous data
written to that Volume will be overwritten.
Please note that the value defined by this directive in the bacula−dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula−dir.conf file will
not change what is stored for the Volume. To change the value for an existing Volume you must use the
update command in the Console.

Recycle Oldest Volume = <yes/no>
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then pruned
respecting the retention periods of all Files and Jobs written to this Volume. If all Jobs are pruned (i.e.
the volume is Purged), then the Volume is recycled and will be used as the next Volume to be written.
This directive respects any Job, File, or Volume retention periods that you may have specified, and as
such it is much better to use this directive than the Purge Oldest Volume.
This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and you have specified the correct retention periods.

Recycle Current Volume = <yes/no>
If Bacula needs a new Volume, this directive instructs Bacula to Prune the volume respecting the Job and
File retention periods. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is recycled and

Bacula Storage Management System

The Pool Resource 109

will be used as the next Volume to be written. This directive respects any Job, File, or Volume retention
periods that you may have specified, and thus it is much better to use it rather than the Purge Oldest
Volume directive.
This directive can be useful if you have: a fixed number of Volumes in the Pool, you want to cycle
through them, and you have specified retention periods that prune Volumes before you have cycled
through the Volume in the Pool.

Purge Oldest Volume = <yes/no>
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then purged
irrespective of retention periods of all Files and Jobs written to this Volume. The Volume is then
recycled and will be used as the next Volume to be written. This directive overrides any Job, File, or
Volume retention periods that you may have specified.
This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and when all Volumes are full, but you don't want to worry about setting proper retention
periods. However, by using this option you risk losing valuable data.

Please be aware that Purge Oldest Volume disregards all retention periods. If you have only a single
Volume defined and you turn this variable on, that Volume will always be immediately overwritten when
it fills! So at a minimum, ensure that you have a decent number of Volumes in your Pool before running
any jobs. If you want retention periods to apply do not use this directive. To specify a retention period,
use the Volume Retention directive (see above).

I highly recommend against using this directive, because it is sure that some day, Bacula will recycle a
Volume that contains current data.

Accept Any Volume = <yes/no>
This directive specifies whether or not any volume from the Pool may be used for backup. The default is
yes as of version 1.27 and later. If it is no then only the first writable volume in the Pool will be accepted
for writing backup data, thus Bacula will fill each Volume sequentially in turn before using any other
appendable volume in the Pool. If this is no and you mount a volume out of order, Bacula will not accept
it. If this is yes any appendable volume from the pool mounted will be accepted.
If your tape backup procedure dictates that you manually mount the next volume, you will almost
certainly want to be sure this directive is turned on.

If you are going on vacation and you think the current volume may not have enough room on it, you can
simply label a new tape and leave it in the drive, and assuming that Accept Any Volume is yes Bacula
will begin writing on it. When you return from vacation, simply remount the last tape, and Bacula will
continue writing on it until it is full. Then you can remount your vacation tape and Bacula will fill it in
turn.

Cleaning Prefix = <string>
This directive defines a prefix string, which if it matches the beginning of a Volume name during
labeling of a Volume, the Volume will be defined with the VolStatus set to Cleaning and thus Bacula
will never attempt to use this tape. This is primarily for use with autochangers that accept barcodes where
the convention is that barcodes beginning with CLN are treated as cleaning tapes.

Label Format = <format>
This directive specifies the format of the labels contained in this pool. The format directive is used as a
sort of template to create new Volume names during automatic Volume labeling.
The format should be specified in double quotes, and consists of letters, numbers and the special
characters hyphen (−), underscore (_), colon (:), and period (.), which are the legal characters for a

Bacula Storage Management System

The Pool Resource 110

Volume name. The format should be enclosed in double quotes (").

In addition, the format may contain a number of variable expansion characters which will be expanded
by a complex algorithm allowing you to create Volume names of many different formats. In all cases, the
expansion process must resolve to the set of characters noted above that are legal Volume names.
Generally, these variable expansion characters begin with a dollar sign ($) or a left bracket ([). If you
specify variable expansion characters, you should always enclose the format with double quote
characters ("). For more details on variable expansion, please see the Variable Expansion Chapter of this
manual.

If no variable expansion characters are found in the string, the Volume name will be formed from the
format string appended with the number of volumes in the pool plus one, which will be edited as four
digits with leading zeros. For example, with a Label Format = "File−", the first volumes will be named
File−0001, File−0002, ...

With the exception of Job specific variables, you can test your LabelFormat by using the var command
the Console Chapter of this manual.

In almost all cases, you should enclose the format specification (part after the equal sign) in double
quotes.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume associated with it.
Volumes are created for a Pool using the label or the add commands in the Bacula Console, program. In
addition to adding Volumes to the Pool (i.e. putting the Volume names in the Catalog database), the physical
Volume must be labeled with valid Bacula software volume label before Bacula will accept the Volume. This
will be automatically done if you use the label command. Bacula can automatically label Volumes if instructed to
do so, but this feature is not yet fully implemented.

The following is an example of a valid Pool resource definition:

Pool {
 Name = Default
 Pool Type = Backup
}

Bacula Storage Management System

The Pool Resource 111

The Catalog Resource
The Catalog Resource defines what catalog to use for the current job. Currently, Bacula can only handle a single
database server (SQLite, MySQL, built−in) that is defined when configuring Bacula. However, there may be as
many Catalogs (databases) defined as you wish. For example, you may want each Client to have its own Catalog
database, or you may want backup jobs to use one database and verify or restore jobs to use another database.

Catalog
Start of the Catalog resource. At least one Catalog resource must be defined.

Name = <name>
The name of the Catalog. No necessary relation to the database server name. This name will be specified
in the Client resource directive indicating that all catalog data for that Client is maintained in this
Catalog. This directive is required.

password = <password>
This specifies the password to use when logging into the database. This directive is required.

DB Name = <name>
This specifies the name of the database. If you use multiple catalogs (databases), you specify which one
here. If you are using an external database server rather than the internal one, you must specify a name
that is known to the server (i.e. you explicitly created the Bacula tables using this name. This directive is
required.

user = <user>
This specifies what user name to use to log into the database. This directive is required.

DB Socket = <socket−name>
This is the name of a socket to use on the local host to connect to the database. This directive is used only
by MySQL and is ignored by SQLite. Normally, if neither DB Socket or DB Address are specified,
MySQL will use the default socket.

DB Address = <address>
This is the host address of the database server. Normally, you would specify this instead of DB Socket if
the database server is on another machine. In that case, you will also specify DB Port. This directive is
used only by MySQL and is ignored by SQLite if provided. This directive is optional.

DB Port = <port>
This defines the port to be used in conjunction with DB Address to access the database if it is on another
machine. This directive is used only by MySQL and is ignored by SQLite if provided. This directive is
optional.

Multiple Connections = <yes/no>
By default, this directive is set to no. In that case, each job that uses the same Catalog will use a single
connection to the catalog. It will be shared, and Bacula will allow only one Job at a time to communicate.
If you set this directive to yes, Bacula will permit multiple connections to the database, and the database
must be multi−thread capable. For SQLite and PostgreSQL, this is no problem. For MySQL, you must be
very careful to have the multi−thread version of the client library loaded on your system. When this
directive is set yes, each Job will have a separate connection to the database, and the database will
control the interaction between the different Jobs. This can significantly speed up the database operations
if you are running multiple simultaneous jobs. In addition, for SQLite and PostgreSQL, Bacula will
automatically enable transactions. This can significantly speed up insertion of attributes in the database
either for a single Job or multiple simultaneous Jobs.
This directive has not been tested. Please test carefully before running it in production and report back
your results.

The following is an example of a valid Catalog resource definition:

The Catalog Resource 112

Catalog
{
 Name = SQLite
 dbname = bacula;
 user = bacula;
 password = "" # no password = no security
}

or for a Catalog on another machine:

Catalog
{
 Name = MySQL
 dbname = bacula
 user = bacula
 password = ""
 DB Address = remote.acme.com
 DB Port = 1234
}

Bacula Storage Management System

The Catalog Resource 113

The Messages Resource
For the details of the Messages Resource, please see the Messages Resource Chapter of this manual.

The Messages Resource 114

The Console Resource
As of Bacula version 1.33 and higher, there are three different kinds of consoles, which the administrator or user
can use to interact with the Director. These three kinds of consoles comprise three different security levels.

The first console type is an anonymous or default console, which has full privileges. There is no console
resource necessary for this type since the password is specified in the Director's resource and
consequently such consoles do not have an name as defined on a Name = directive. This is the kind of
console that was initially implemented in versions prior to 1.33 and remains valid. Typically you would
use it only for administrators.

•

The second type of console, and new to version 1.33 and higher is a "named" console defined within a
Console resource in both the Director's configuration file and in the Console's configuration file. Both the
names and the passwords in these two entries must match much as is the case for Client programs.

•

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director's Console resource. Thus you can have multiple Consoles with different names and passwords,
sort of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing −− no commands what so ever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director's Console resource. The ACLs are specified by
a directive followed by a list of access names. Examples of this are shown below.

The third type of console is similar to the above mentioned one in that it requires a Console resource
definition in both the Director and the Console. In addition, if the console name, provided on the Name =
directive, is the same as a Client name, that console is permitted to use the SetIP command to change the
Address directive in the Director's client resource to the IP address of the Console. This permits portables
or other machines using DHCP (non−fixed IP addresses) to "notify" the Director of their current IP
address.

•

The Console resource is optional and need not be specified. The following directives are permited within the
Director's configuration resource:

Name = <name>
The name of the console. This name must match the name specified in the Console's configuration
resource (much as is the case with Client definitions).

Password = <password>
Specifies the password that must be supplied for a named Bacula Console to be authorized. The same
password must appear in the Console resource of the Console configuration file. For added security, the
password is never actually passed across the network but rather a challenge response hash code created
with the password. This directive is required. If you have either /dev/random bc on your machine,
Bacula will generate a random password during the configuration process, otherwise it will be left blank.

JobACL = <name−list>
This directive is used to specify a list of Job resource names that can be accessed by the console. Without
this directive, the console cannot access any of the Director's Job resources. Multiple Job resource names
may be specified by separating them with commas, and/or by specifying multiple JobACL directives. For
example, the directive may be specified as:
 JobACL = kernsave, "Backup client 1", "Backup client 2"
 JobACL = "RestoreFiles"

With the above specification, the console can access the Director's resources for the four jobs named on
the JobACL directives, but for no others.

The Console Resource 115

ClientACL = <name−list>
This directive is used to specify a list of Client resource names that can be accessed by the console.

StorageACL = <name−list>
This directive is used to specify a list of Storage resource names that can be accessed by the console.

ScheduleACL = <name−list>
This directive is used to specify a list of Schedule resource names that can be accessed by the console.

PoolACL = <name−list>
This directive is used to specify a list of Pool resource names that can be accessed by the console.

FileSetACL = <name−list>
This directive is used to specify a list of FileSet resource names that can be accessed by the console.

CatalogACL = <name−list>
This directive is used to specify a list of Catalog resource names that can be accessed by the console.

CommandACL = <name−list>
This directive is used to specify a list of of console commands that can be executed by the console.

Aside from Director resource names and console command names, the special keyword *all* can be specified in
any of the above access control lists. When this keyword is present, any resource or command name (which ever
is appropriate) will be accepted. For an example configuration file, please see the Console Configuration chapter
of this manual.

Bacula Storage Management System

The Console Resource 116

The Counter Resource
The Counter Resource defines a counter variable that can be accessed by variable expansion used for creating
Volume labels with the LabelFormat directive. See the LabelFormat directive in this chapter for more details.

Counter
Start of the Counter resource. Counter directives are optional.

Name = <name>
The name of the Counter. This is the name you will use in the variable expansion to reference the counter
value.

Minimum = <integer>
This specifies the minimum value that the counter can have. It also becomes the default. If not supplied,
zero is assumed.

Maximum = <integer>
This is the maximum value value that the counter can have. If not specified or set to zero, the counter can
have a maximum value of 2,147,483,648 (2 to the 31 power). When the counter is incremented past this
value, it is reset to the Minimum.

*WrapCounter = <counter−name>
If this value is specified, when the counter is incremented past the maximum and thus reset to the
minimum, the counter specified on the WrapCounter is incremented. (This is not currently
implemented).

Catalog = <catalog−name>
If this directive is specified, the counter and its values will be saved in the specified catalog. If this
directive is not present, the counter will be redefined each time that Bacula is started.

The Counter Resource 117

A Complete Example Director Configuration File
An example Director configuration file might be the following:

#
Default Bacula Director Configuration file
#
The only thing that MUST be changed is to add one or more
file or directory names in the Include directive of the
FileSet resource.
#
For Bacula release 1.15 (5 March 2002) −− redhat
#
You might also want to change the default email address
from root to your address. See the "mail" and "operator"
directives in the Messages resource.
#

Director { # define myself
 Name = rufus−dir
 QueryFile = "/home/kern/bacula/bin/query.sql"
 WorkingDirectory = "/home/kern/bacula/bin/working"
 PidDirectory = "/home/kern/bacula/bin/working"
 Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"
}

Define the backup Job
Job {
 Name = "NightlySave"
 Type = Backup
 Level = Incremental # default
 Client=rufus−fd
 FileSet="Full Set"
 Schedule = "WeeklyCycle"
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
}

Job {
 Name = "Restore"
 Type = Restore
 Client=rufus−fd
 FileSet="Full Set"
 Where = /tmp/bacula−restores
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
}

List of files to be backed up
FileSet {
 Name = "Full Set"
 Include {
 Options { signature=SHA1 }
#
Put your list of files here, one per line or include an
external list with:

 A Complete Example Director Configuration File 118

#
@file−name
#
Note: / backs up everything

 File = /

 }
 Exclude { }
}

When to do the backups
Schedule {
 Name = "WeeklyCycle"
 Run = Full sun at 1:05
 Run = Incremental mon−sat at 1:05
}

Client (File Services) to backup
Client {
 Name = rufus−fd
 Address = rufus
 Catalog = MyCatalog
 Password = "MQk6lVinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"
 File Retention = 60d # sixty day file retention
 Job Retention = 1y # 1 year Job retention
 AutoPrune = yes # Auto apply retention periods
}

Definition of DLT tape storage device
Storage {
 Name = DLTDrive
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = "HP DLT 80" # same as Device in Storage daemon
 Media Type = DLT8000 # same as MediaType in Storage daemon
}

Definition of DDS tape storage device
Storage {
 Name = SDT−10000
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = SDT−10000 # same as Device in Storage daemon
 Media Type = DDS−4 # same as MediaType in Storage daemon
}

Definition of 8mm tape storage device
Storage {
 Name = "8mmDrive"
 Address = rufus
 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = "Exabyte 8mm"
 MediaType = "8mm"
}

Definition of file storage device
Storage {
 Name = File
 Address = rufus

Bacula Storage Management System

 A Complete Example Director Configuration File 119

 Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"
 Device = FileStorage
 Media Type = File
}

Generic catalog service
Catalog {
 Name = MyCatalog
 dbname = bacula; user = bacula; password = ""
}

Reasonable message delivery −− send most everything to
the email address and to the console
Messages {
 Name = Standard
 mail = root@localhost = all, !skipped, !terminate
 operator = root@localhost = mount
 console = all, !skipped, !saved
}

Default pool definition
Pool {
 Name = Default
 Pool Type = Backup
 AutoPrune = yes
 Recycle = yes
}

#
Restricted console used by tray−monitor to get the status of the director
#
Console {
 Name = Monitor
 Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"
 CommandACL = status, .status
}

Bacula Configuration Index Client/File daemon Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Director Configuration Index Storage Daemon Configuration

Bacula Storage Management System

 A Complete Example Director Configuration File 120

http://www.bacula.org/

Client/File daemon Configuration

General

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other than changing
the Client name so that error messages are easily identified, you will not need to modify the default Client
configuration file.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual. The following Client Resource definitions must be defined:

Client −− to define what Clients are to be backed up.•
Director −− to define the Director's name and its access password.•
Messages −− to define where error and information messages are to be sent.•

Client/File daemon Configuration 121

The Client Resource
The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the Director) as well as
the port on which the Client listens for Director connections.

Client (or FileDaemon)
Start of the Client records. There must be one and only one Client resource in the configuration file, since
it defines the properties of the current client program.

Name = <name>
The client name that must be used by the Director when connecting. Generally, it is a good idea to use a
name related to the machine so that error messages can be easily identified if you have multiple Clients.
This record is required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the File daemon may put its status files.
This directory should be used only by Bacula, but may be shared by other Bacula daemons. This record
is required

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its process Id file
files. The process Id file is used to shutdown Bacula and to prevent multiple copies of Bacula from
running simultaneously. This record is required. Standard shell expansion of the Directory is done when
the configuration file is read so that values such as $HOME will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the system
directories, you can use the Working Directory as defined above.

Heartbeat Interval = <time−interval>
This record defines an interval of time. For each heartbeat that the File daemon receives from the Storage
daemon, it will forward it to the Director. In addition, if no heartbeat has been received from the Storage
daemon and thus forwarded the File daemon will send a heartbeat signal to the Director and to the
Storage daemon to keep the channels active. The default interval is zero which disables the heartbeat.
This feature is particularly useful if you have a router such as 3Com that does not follow Internet
standards and times out an inactive connection after a short duration.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs that should run concurrently. The default is set to 2,
but you may set it to a larger number. Each contact from the Director (e.g. status request, job start
request) is considered as a Job, so if you want to be able to do a status request in the console at the same
time as a Job is running, you will need to set this value greater than 1.

FDAddresses = <IP−address−specification>
Specify the ports and addresses on which the Director daemon will listen for Bacula Console
connections. Probably the simplest way to explain is to show an example:
 FDAddresses = { ip = {
 addr = 1.2.3.4; port = 1205; }
 ipv4 = {
 addr = 1.2.3.4; port = http; }
 ipv6 = {
 addr = 1.2.3.4;
 port = 1205;
 }
 ip = {
 addr = 1.2.3.4
 port = 1205
 }
 ip = {

The Client Resource 122

 addr = 1.2.3.4
 }
 ip = {
 addr = 201:220:222::2
 }
 ip = {
 addr = bluedot.thun.net
 }
 }

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also, port
can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by IPv4
or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

FDPort = <port−number>
This specifies the port number on which the Client listens for Director connections. It must agree with
the FDPort specified in the Client resource of the Director's configuration file. The default is 9102.

FDAddress = <IP−Address>
This record is optional, and if it is specified, it will cause the File daemon server (for Director
connections) to bind to the specified IP−Address, which is either a domain name or an IP address
specified as a dotted quadruple. If this record is not specified, the File daemon will bind to any available
address (the default).

SDConnectTimeout = <time−interval>
This record defines an interval of time that the File daemon will try to connect to the Storage daemon.
The default is 30 minutes. If no connection is made in the specified time interval, the File daemon
cancels the Job.

Maximum Network Buffer Size = <bytes>
where <bytes> specifies the initial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please use care in setting this value since if
it is too large, it will be trimmed by 512 bytes until the OS is happy, which may require a large number
of system calls. The default value is 32,768 bytes.

The following is an example of a valid Client resource definition:

Client { # this is me
 Name = rufus−fd
 WorkingDirectory = $HOME/bacula/bin/working
 Pid Directory = $HOME/bacula/bin/working
}

Bacula Storage Management System

The Client Resource 123

The Director Resource
The Director resource defines the name and password of the Directors that are permitted to contact this Client.

Director
Start of the Director records. There may be any number of Director resources in the Client configuration
file. Each one specifies a Director that is allowed to connect to this Client.

Name = <name>
The name of the Director that may contact this Client. This name must be the same as the name specified
on the Director resource in the Director's configuration file. This record is required.

Password = <password>
Specifies the password that must be supplied for a Director to be authorized. This password must be the
same as the password specified in the Client resource in the Director's configuration file. This record is
required.

Monitor = <yes/no>
If Monitor is set to no (default), this director will have full access to this Client. If Monitor is set to yes,
this director will only be able to fetch the current status of this Client.
Please note that if this director is being used by a Monitor, we highly recommend to set this directive to
yes to avoid serious security problems.

Thus multiple Directors may be authorized to use this Client's services. Each Director will have a different name,
and normally a different password as well.

The following is an example of a valid Director resource definition:

#
List Directors who are permitted to contact the File daemon
#
Director {
 Name = HeadMan
 Password = very_good # password HeadMan must supply
}

Director {
 Name = Worker
 Password = not_as_good
 Monitor = Yes
}

The Director Resource 124

The Message Resource
Please see the Messages Resource Chapter of this manual for the details of the Messages Resource.

There must be at least one Message resource in the Client configuration file.

The Message Resource 125

Example Client Configuration File
An example File Daemon configuration file might be the following:

#
Default Bacula File Daemon Configuration file
#
For Bacula release 1.35.2 (16 August 2004) −− gentoo 1.4.16
#
There is not much to change here except perhaps to
set the Director's name and File daemon's name
to something more appropriate for your site.
#

#
List Directors who are permitted to contact this File daemon
#
Director {
 Name = rufus−dir
 Password = "/LqPRkX++saVyQE7w7mmiFg/qxYc1kufww6FEyY/47jU"
}

#
Restricted Director, used by tray−monitor to get the
status of the file daemon
#
Director {
 Name = rufus−mon
 Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"
 Monitor = yes
}

#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
 Name = rufus−fd
 WorkingDirectory = $HOME/bacula/bin/working
 Pid Directory = $HOME/bacula/bin/working
}

Send all messages except skipped files back to Director
Messages {
 Name = Standard
 director = rufus−dir = all, !skipped
}

Director Configuration Index Storage Daemon Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Example Client Configuration File 126

http://www.bacula.org/

Bacula 1.36 User's Guide

Client/File daemon Configuration Index Messages Resource

Bacula Storage Management System

Example Client Configuration File 127

Storage Daemon Configuration

General

The Storage Daemon configuration file has relatively few resource definitions. However, due to the great
variation in backup media and system capabilities, the storage daemon must be highly configurable. As a
consequence, there are quite a large number of directives in the Device Resource definition that allow you to
define all the characteristics of your Storage device (normally a tape drive). Fortunately, with modern storage
devices, the defaults are sufficient, and very few directives are actually needed.

Examples of Device resource directives that are known to work for a number of common tape drives can be
found in the <bacula−src>/examples/devices directory, and most will also be listed here.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual. The following Storage Resource definitions must be defined:

Storage −− to define the name of the Storage daemon.•
Director −− to define the Director's name and his access password.•
Device −− to define the characteristics of your storage device (tape drive).•
Messages −− to define where error and information messages are to be sent.•

Storage Resource

In general, the properties specified under the Storage resource define global properties of the Storage daemon.
Each Storage daemon configuration file must have one and only one Storage resource definition.

Name = <Storage−Daemon−Name>
Specifies the Name of the Storage daemon. This directive is required.

Working Directory = <Directory>
This directive is mandatory and specifies a directory in which the Storage daemon may put its status
files. This directory should be used only by Bacula, but may be shared by other Bacula daemons. This
directive is required

Pid Directory = <Directory>
This directive is mandatory and specifies a directory in which the Director may put its process Id file
files. The process Id file is used to shutdown Bacula and to prevent multiple copies of Bacula from
running simultaneously. This directive is required. Standard shell expansion of the Directory is done
when the configuration file is read so that values such as $HOME will be properly expanded.
Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the system
directories, you can use the Working Directory as defined above.

Heartbeat Interval = <time−interval>
This directive defines an interval of time. When the Storage daemon is waiting for the operator to mount
a tape, each time interval, it will send a heartbeat signal to the File daemon. The default interval is zero
which disables the heartbeat. This feature is particularly useful if you have a router such as 3Com that
does not follow Internet standards and times out an inactive connection after a short duration.

Maximum Concurrent Jobs = <number>
where <number> is the maximum number of Jobs that should run concurrently. The default is set to 2,
but you may set it to a larger number. Each contact from the Director (e.g. status request, job start
request) is considered as a Job, so if you want to be able to do a status request in the console at the same

Storage Daemon Configuration 128

time as a Job is running, you will need to set this value greater than 1.
SDAddresses = <IP−address−specification>

Specify the ports and addresses on which the Storage daemon will listen for Director connections.
Normally, the default is sufficient and you do not need to specify this directive. Probably the simplest
way to explain how this directive works is to show an example:
 SDAddresses = { ip = {
 addr = 1.2.3.4; port = 1205; }
 ipv4 = {
 addr = 1.2.3.4; port = http; }
 ipv6 = {
 addr = 1.2.3.4;
 port = 1205;
 }
 ip = {
 addr = 1.2.3.4
 port = 1205
 }
 ip = {
 addr = 1.2.3.4
 }
 ip = {
 addr = 201:220:222::2
 }
 ip = {
 addr = bluedot.thun.net
 }
 }

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also, port
can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by IPv4
or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

Using this directive, you can replace both the SDPort and SDAddress directives shown below.

SDPort = <port−number>
Specifies port number on which the Storage daemon listens for Director connections. The default is 9103.

SDAddress = <IP−Address>
This directive is optional, and if it is specified, it will cause the Storage daemon server (for Director and
File daemon connections) to bind to the specified IP−Address, which is either a domain name or an IP
address specified as a dotted quadruple. If this directive is not specified, the Storage daemon will bind to
any available address (the default).

The following is a typical Storage daemon Storage definition.

#
"Global" Storage daemon configuration specifications appear
under the Storage resource.
#
Storage {
 Name = "Storage daemon"
 Address = localhost
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
}

Bacula Storage Management System

Storage Daemon Configuration 129

Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services of the Storage
daemon. There may be multiple Director resources. The Director Name and Password must match the
corresponding values in the Director's configuration file.

Name = <Director−Name>
Specifies the Name of the Director allowed to connect to the Storage daemon. This directive is required.

Password = <Director−password>
Specifies the password that must be supplied by the above named Director. This directive is required.

Monitor = <yes/no>
If Monitor is set to no (default), this director will have full access to this Storage daemon. If Monitor is
set to yes, this director will only be able to fetch the current status of this Storage daemon.
Please note that if this director is being used by a Monitor, we highly recommend to set this directive to
yes to avoid serious security problems.

The following is an example of a valid Director resource definition:

Director {
 Name = MainDirector
 Password = my_secret_password
}

Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used by the Storage
daemon. There may be multiple Device resources for a single Storage daemon. In general, the properties
specified within the Device resource are specific to the Device.

Name = Device−Name
Specifies the Name that the Director will use when asking to backup or restore to or from to this device.
This is the logical Device name, and may be any string up to 127 characters in length. It is generally a
good idea to make it correspond to the English name of the backup device. The physical name of the
device is specified on the Archive Device directive described below. The name you specify here is also
used in your Director's conf file on the Device directive in its Storage resource.

Archive Device = name−string
The specified name−string gives the system file name of the storage device managed by this storage
daemon. This will usually be the device file name of a removable storage device (tape drive), for
example "/dev/nst0" or "/dev/rmt/0mbn". It may also be a directory name if you are archiving to disk
storage. In this case, you must supply the full absolute path to the directory. When specifying a tape
device, it is preferable that the "non−rewind" variant of the device file name be given. In addition, on
systems such as Sun, which have multiple tape access methods, you must be sure to specify to use
Berkeley I/O conventions with the device. The b in the Solaris (Sun) archive specification
/dev/rmt/0mbn is what is needed in this case. Bacula does not support SysV tape drive behavior.
As noted above, normally the Archive Device is the name of a tape drive, but you may also specify an
absolute path to an existing directory. If the Device is a directory Bacula will write to file storage in the
specified directory, and the filename used will be the Volume name as specified in the Catalog. If you
want to write into more than one directory (i.e. to spread the load to different disk drives), you will need
to define two Device resources, each containing an Archive Device with a different directory.

Bacula Storage Management System

Device Resource 130

In addition to a tape device name or a directory name, Bacula will accept the name of a FIFO. A FIFO is
a special kind of file that connects two programs via kernel memory. If a FIFO device is specified for a
backup operation, you must have a program that reads what Bacula writes into the FIFO. When the
Storage daemon starts the job, it will wait for MaximumOpenWait seconds for the read program to start
reading, and then time it out and terminate the job. As a consequence, it is best to start the read program
at the beginning of the job perhaps with the RunBeforeJob directive. For this kind of device, you never
want to specify AlwaysOpen, because you want the Storage daemon to open it only when a job starts, so
you must explicitly set it to No. Since a FIFO is a one way device, Bacula will not attempt to read a label
of a FIFO device, but will simply write on it. To create a FIFO Volume in the catalog, use the add
command rather than then label command to avoid attempting to write a label.

During a restore operation, if the Archive Device is a FIFO, Bacula will attempt to read from the FIFO,
so you must have an external program that writes into the FIFO. Bacula will wait MaximumOpenWait
seconds for the program to begin writing and will then time it out and terminate the job. As noted above,
you may use the RunBeforeJob to start the writer program at the beginning of the job.

The Archive Device directive is required.

Media Type = name−string
The specified name−string names the type of media supported by this device, for example, "DLT7000".
Media type names are arbitrary in that you set it to anything you want, but must be known to the volume
database to keep track of which storage daemons can read which volumes. The same name−string must
appear in the appropriate Storage resource definition in the Director's configuration file.
Even though the names you assign are arbitrary (i.e. you choose the name you want), you should take
care in specifying them because the Media Type is used to determine which storage device Bacula will
select during restore. Thus you should probably use the same Media Type specification for all drives
where the Media can be freely interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they have incompatible media.

For example, if you specify a Media Type of "DDS−4" then during the restore, Bacula will be able to
choose any Storage Daemon that handles "DDS−4". If you have an autochanger, you might want to name
the Media Type in a way that is unique to the autochanger, unless you wish to possibly use the Volumes
in other drives. You should also ensure to have unique Media Type names if the Media is not compatible
between drives. This specification is required for all devices.

Autochanger = Yes|No
If Yes, this device is an automatic tape changer, and you should also specify a Changer Device as well
as a Changer Command. If No (default), the volume must be manually changed. You might also want
to add an identical directive to the Storage resource in the Director's configuration file so that when
labeling tapes you are prompted for the slot.

Changer Device = name−string
The specified name−string gives the system file name of the autochanger device name that corresponds
to the Archive Device specified. This device name is specified if you have an autochanger or if you want
to use the Alert Command (see below). Normally you will specify the generic SCSI device name in this
directive. For example, on Linux systems, for archive device /dev/nst0, This directive is optional. See the
Using Autochangers chapter of this manual for more details of using this and the following autochanger
directives.

Changer Command = name−string

Bacula Storage Management System

Device Resource 131

The name−string specifies an external program to be called that will automatically change volumes as
required by Bacula. Most frequently, you will specify the Bacula supplied mtx−changer script as
follows:
Changer Command = "/path/mtx−changer %c %o %S %a %d"

and you will install the mtx on your system (found in the depkgs release). An example of this command
is in the default bacula−sd.conf file. For more details on the substitution characters that may be specified
to configure your autochanger please see the Autochangers chapter of this manual. For FreeBSD users,
you might want to see one of the several chio scripts in examples/autochangers.

Alert Command = name−string
The name−string specifies an external program to be called at the completion of each Job after the
device is released. The purpose of this command is to check for Tape Alerts, which are present when
something is wrong with your tape drive (at least for most modern tape drives). The same substitution
characters that may be specified in the Changer Command may also be used in this string. For more
information, please see the Autochangers chapter of this manual.
Note, it is not necessary to have an autochanger to use this command. The example below uses the
tapeinfo program that comes with the mtx package, but it can be used on any tape drive. However, you
will need to specify a Changer Device directive in your Device resource (see above) so that the generic
SCSI device name can be edited into the command (with the %c).

An example of the use of this command to print Tape Alerts in the Job report is:

Alert Command = "sh −c 'tapeinfo −f %c | grep TapeAlert'"

and an example output when there is a problem could be:

bacula−sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface
 between tape drive and initiator.

Drive Index = number
The Drive Index that you specify is passed to the mtx−changer script and is thus passed to the mtx
program. By default, the Drive Index is zero, so if you have only one drive in your autochanger,
everything will work normally. However, if you have multiple drives, you may specify two Bacula
Device resources. The first will either set Drive Index to zero, or leave it unspecified, and the second
Device Resource should contain a Drive Index set to 1. This will then permit you to use two or more
drives in your autochanger. However, you must ensure that Bacula does not request the same Volume on
both drives at the same time. You may also need to modify the mtx−changer script to do locking so that
two jobs don't attempt to use the autochanger at the same time. An example script can be found in
examples/autochangers/locking−mtx−changer.

Maximum Changer Wait = time
This directive specifies the maximum time for Bacula to wait for an autochanger to change the volume. If
this time is exceeded, Bacula will invalidate the Volume slot number stored in the catalog and try again.
If no additional changer volumes exist, Bacula will ask the operator to intervene. The default time out is
5 minutes.

Always Open = Yes|No
If Yes (default), Bacula will always keep the device open unless specifically unmounted by the Console

Bacula Storage Management System

Device Resource 132

program. This permits Bacula to ensure that the tape drive is always available. If you set AlwaysOpen to
no Bacula will only open the drive when necessary, and at the end of the Job if no other Jobs are using
the drive, it will be freed. To minimize unnecessary operator intervention, it is highly recommended that
Always Open = yes. This also ensures that the drive is available when Bacula needs it.
If you have Always Open = yes (recommended) and you want to use the drive for something else,
simply use the unmount command in the Console program to release the drive. However, don't forget to
remount the drive with mount when the drive is available or the next Bacula job will block.

For File storage, this directive is ignored. For a FIFO storage device, you must set this to No.

Please note that if you set this directive to No Bacula will release the tape drive between each job, and
thus the next job will rewind the tape and position it to the end of the data. This can be a very time
consuming operation.

Volume Poll Interval = time
If a non−zero time interval is specified, Bacula will poll the device after asking the operator to mount a
new volume to see if the new volume has been mounted. If the time interval is zero (the default), no
polling will occur. This directive can be useful if you want to avoid operator intervention via the console.
The operator can simply remove the old volume and insert the requested one, and Bacula will continue.
Please be aware that if you set this interval to small, you may excessively wear your tape drive if the old
tape remains in the drive since Bacula will read it on each poll. This could be avoided by using the
Offline On Unmount and the Close on Poll directives.

Close on Poll= Yes|No
If Yes, Bacula close the device (equivalent to an unmount except no mount is required) and reopen it at
each poll. Normally this is not too useful unless you have the Offline on Unmount directive set, in
which case the drive will be taken offline preventing wear on the tape during any future polling. Once the
operator inserts a new tape, Bacula will recognize the drive on the next poll and automatically continue
with the backup.

Maximum Open Wait = time
This directive specifies the maximum amount of time that Bacula will wait for a device that is busy. The
default is 5 minutes. If the device cannot be obtained, the current Job will be terminated in error. Bacula
will re−attempt to open the drive the next time a Job starts that needs the the drive.

Removable media = Yes|No
If Yes, this device supports removable media (for example, tapes or CDs). If No, media cannot be
removed (for example, an intermediate backup area on a hard disk).

Random access = Yes|No
If Yes, the archive device is assumed to be a random access medium which supports the lseek (or
lseek64 if Largefile is enabled during configuration) facility.

Minimum block size = size−in−bytes
On most modern tape drives, you will not need to specify this directive, and if you do so, it will be to
make Bacula use fixed block sizes. This statement applies only to non−random access devices (e.g. tape
drives). Blocks written by the storage daemon to a non−random archive device will never be smaller than
the given size−in−bytes. The Storage daemon will attempt to efficiently fill blocks with data received
from active sessions but will, if necessary, add padding to a block to achieve the required minimum size.
To force the block size to be fixed, as is the case for some non−random access devices (tape drives), set
the Minimum block size and the Maximum block size to the same value (zero included). The default is
that both the minimum and maximum block size are zero and the default block size is 64,512 bytes. If
you wish the block size to be fixed and different from the default, specify the same value for both

Bacula Storage Management System

Device Resource 133

Minimum block size and Maximum block size.

For example, suppose you want a fixed block size of 100K bytes, then you would specify:

 Minimum block size = 100K
 Maximum block size = 100K

Please note that if you specify a fixed block size as shown above, the tape drive must either be in variable
block size mode, or if it is in fixed block size mode, the block size (generally defined by mt) must be
identical to the size specified in Bacula −− otherwise when you attempt to re−read your Volumes, you
will get an error.

If you want the block size to be variable but with a 64K minimum and 200K maximum (and default as
well), you would specify:

 Minimum block size = 64K
 Maximum blocksize = 200K

Maximum block size = size−in−bytes
On most modern tape drives, you will not need to specify this directive. If you do so, it will most likely
be to use fixed block sizes (see Minimum block size above). The Storage daemon will aways attempt to
write blocks of the specified size−in−bytes to the archive device. As a consequence, this statement
specifies both the default block size and the maximum block size. The size written never exceed the
given size−in−bytes. If adding data to a block would cause it to exceed the given maximum size, the
block will be written to the archive device, and the new data will begin a new block.
If no value is specified or zero is specified, the Storage daemon will use a default block size of 64,512
bytes (126 * 512).

Hardware End of Medium = Yes|No
If No, the archive device is not required to support end of medium ioctl request, and the storage daemon
will use the forward space file function to find the end of the recorded data. If Yes, the archive device
must support the ioctl MTEOM call, which will position the tape to the end of the recorded data. In
addition, your SCSI driver must keep track of the file number on the tape and report it back correctly by
the MTIOCGET ioctl. Note, some SCSI drivers will correctly forward space to the end of the recorded
data, but they do not keep track of the file number. On Linux machines, the SCSI driver has a fast−eod
option, which if set will cause the driver to lose track of the file number. You should ensure that this
option is always turned off using the mt program.
Default setting for Hardware End of Medium is Yes. This function is used before appending to a tape to
ensure that no previously written data is lost. We recommend if you have a non standard or unusual tape
drive that you use the btape program to test your drive to see whether or not it supports this function. All
modern (after 1998) tape drives support this feature.

If you set Hardware End of Medium = no, you should also set Fast Forward Space File = no. If you do
not, Bacula will most likely be unable to correctly find the end of data on the tape.

Fast Forward Space File = Yes|No
If No, the archive device is not required to support keeping track of the file number (MTIOCGET ioctl)
during forward space file. If Yes, the archive device must support the ioctlMTFSF call, which
virtually all drivers support, but in addition, your SCSI driver must keep track of the file number on the
tape and report it back correctly by the MTIOCGET ioctl. Note, some SCSI drivers will correctly

Bacula Storage Management System

Device Resource 134

forward space, but they do not keep track of the file number or more seriously, they do not report end of
meduim.
Default setting for Fast Forward Space File is Yes. If you disable Hardware End of Medium, most likely
you should also disable Fast Forward Space file. The test command in the program btape will test this
feature and advise you if it should be turned off.

BSF at EOM = Yes|No
If No, the default, no special action is taken by Bacula with the End of Medium (end of tape) is reached
because the tape will be positioned after the last EOF tape mark, and Bacula can append to the tape as
desired. However, on some systems, such as FreeBSD, when Bacula reads the End of Medium (end of
tape), the tape will be positioned after the second EOF tape mark (two successive EOF marks indicated
End of Medium). If Bacula appends from that point, all the appended data will be lost. The solution for
such systems is to specify BSF at EOM which causes Bacula to backspace over the second EOF mark.
Determination of whether or not you need this directive is done using the test command in the btape
program.

TWO EOF = Yes|No
If Yes, Bacula will write two end of file marks when terminating a tape −− i.e. after the last job or at the
end of the medium. If No, the default, Bacula will only write one end of file to terminate the tape.

Backward Space Record = Yes|No
If Yes, the archive device supports the MTBSR ioctl to backspace records. If No, this call is not used
and the device must be rewound and advanced forward to the desired position. Default is Yes for non
random−access devices.

Backward Space File = Yes|No
If Yes, the archive device supports the MTBSF and MTBSF ioctls to backspace over an end of file mark
and to the start of a file. If No, these calls are not used and the device must be rewound and advanced
forward to the desired position. Default is Yes for non random−access devices.

Forward Space Record = Yes|No
If Yes, the archive device must support the MTFSR ioctl to forward space over records. If No, data must
be read in order to advance the position on the device. Default is Yes for non random−access devices.

Forward Space File = Yes|No
If Yes, the archive device must support the MTFSF ioctl to forward space by file marks. If No, data
must be read to advance the position on the device. Default is Yes for non random−access devices.

Offline On Unmount = Yes|No
The default for this directive is No. If Yes the archive device must support the MTOFFL ioctl to
rewind and take the volume offline. In this case, Bacula will issue the offline (eject) request before
closing the device during the unmount command. If No Bacula will not attempt to offline the device
before unmounting it. After an offline is issued, the cassette will be ejected thus requiring operator
intervention to continue, and on some systems require an explicit load command to be issued (mt −f
/dev/xxx load) before the system will recognize the tape. If you are using an autochanger, some devices
require an offline to be issued prior to changing the volume. However, most devices do not and may get
very confused.

Maximum Volume Size = size
No more than size bytes will be written onto a given volume on the archive device. This directive is used
mainly in testing Bacula to simulate a small Volume. It can also be useful if you wish to limit the size of
a File Volume to say less than 2GB of data. In some rare cases of really antiquated tape drives that do not

Bacula Storage Management System

Device Resource 135

properly indicate when the end of a tape is reached during writing (though I have read about such drives,
I have never personally encountered one). Please note, this directive is deprecated (being phased out) in
favor of the Maximum Volume Bytes defined in the Director's configuration file.

Maximum File Size = size
No more than size bytes will be written into a given logical file on the volume. Once this size is reached,
an end of file mark is written on the volume and subsequent data are written into the next file. Breaking
long sequences of data blocks with file marks permits quicker positioning to the start of a given stream of
data and can improve recovery from read errors on the volume. The default is one Gigabyte.

Block Positioning = yes/no
This directive is not normally used (and has not yet been tested). It will tell Bacula not to use block
positioning when it is reading tapes. This can cause Bacula to be extremely slow when restoring files.
You might use this directive if you wrote your tapes with Bacula in variable block mode (the default), but
your drive was in fixed block mode. If it then works as I hope, Bacula will be able to re−read your tapes.

Maximum Network Buffer Size = bytes
where bytes specifies the initial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please use care in setting this value since if
it is too large, it will be trimmed by 512 bytes until the OS is happy, which may require a large number
of system calls. The default value is 32,768 bytes.

Maximum Spool Size = bytes
where the bytes specify the maximum spool size for all jobs that are running. The default is no limit.

Maximum Job Spool Size = bytes
where the bytes specify the maximum spool size for any one job that is running. The default is no limit.

Spool Directory = directory
specifies the name of the directory to be used to store the spool files for this device. The default is to use
the working directory.

Parallelism

Maximum Concurrent Jobs = positive integer
The storage daemon will accept no more than the given positive integer of simultaneous connections.
The default is 10. It is best to set this number fairly large (e.g. 10 or 20) and control how many Jobs are
running with the Maximum Concurrent Jobs in the Storage resource in the Director's configuration
file.

Capabilities

Label media = Yes|No
If Yes, permits this device to automatically label blank media without an explicit operator command. It
does so by using an internal algorithm as defined on the Label Format record in each Pool resource. If
this is No as by default, Bacula will label tapes only by specific operator command (label in the Console)
or when the tape has been recycled. The automatic labeling feature is most useful when writing to disk
rather than tape volumes.

Automatic mount = Yes|No
If Yes (the default), permits the daemon to examine the device to determine if it contains a Bacula
labeled volume. This is done initially when the daemon is started, and then at the beginning of each job.
This directive is particularly important if you have set Always Open = no because it permits Bacula to

Bacula Storage Management System

Parallelism 136

attempt to read the device before asking the system operator to mount a tape.

Messages Resource

For a description of the Messages Resource, please see the Messages Resource Chapter of this manual.

Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

#
Default Bacula Storage Daemon Configuration file
#
For Bacula release 1.35.2 (16 August 2004) −− gentoo 1.4.16
#
You may need to change the name of your tape drive
on the "Archive Device" directive in the Device
resource. If you change the Name and/or the
"Media Type" in the Device resource, please ensure
that bacula−dir.conf has corresponding changes.
#

Storage { # definition of myself
 Name = rufus−sd
 Address = rufus
 WorkingDirectory = "$HOME/bacula/bin/working"
 Pid Directory = "$HOME/bacula/bin/working"
 Maximum Concurrent Jobs = 1
}

#
List Directors who are permitted to contact Storage daemon
#
Director {
 Name = rufus−dir
 Password = "ZF9Ctf5PQoWCPkmR3s4atCB0usUPg+vWWyIo2VS5ti6k"
}

#
Restricted Director, used by tray−monitor to get the
status of the storage daemon
#
Director {
 Name = rufus−mon
 Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"
 Monitor = yes
}

#
Devices supported by this Storage daemon
To connect, the Director's bacula−dir.conf must have the
same Name and MediaType.
#
Device {
 Name = "HP DLT 80"
 Media Type = DLT8000
 Archive Device = /dev/nst0
 AutomaticMount = yes; # when device opened, read it

Bacula Storage Management System

Messages Resource 137

 AlwaysOpen = yes;
 RemovableMedia = yes;
}

#Device {
Name = SDT−7000
Media Type = DDS−2
Archive Device = /dev/nst0
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;
RemovableMedia = yes;
#}

#Device {
Name = Floppy
Media Type = Floppy
Archive Device = /mnt/floppy
RemovableMedia = yes;
Random Access = Yes;
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = no;
#}

#Device {
Name = FileStorage
Media Type = File
Archive Device = /tmp
LabelMedia = yes; # lets Bacula label unlabeled media
Random Access = Yes;
AutomaticMount = yes; # when device opened, read it
RemovableMedia = no;
AlwaysOpen = no;
#}

#
A very old Exabyte with no end of media detection
#
#Device {
Name = "Exabyte 8mm"
Media Type = "8mm"
Archive Device = /dev/nst0
Hardware end of medium = No;
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = Yes;
RemovableMedia = yes;
#}

#
Send all messages to the Director,
mount messages also are sent to the email address
#
Messages {
 Name = Standard
 director = rufus−dir = all
 operator = root = mount
}

Bacula Storage Management System

Messages Resource 138

Client/File daemon Configuration Index Messages Resource

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Storage Daemon Configuration Index Console Configuration

Bacula Storage Management System

Messages Resource 139

http://www.bacula.org/

Messages Resource

The Messages Resource

The Messages resource defines how messages are to be handled and destinations to which they should be sent.

Even though each daemon has a full message handler, within the File daemon and the Storage daemon, you will
normally choose to send all the appropriate messages back to the Director. This permits all the messages
associated with a single Job to be combined in the Director and sent as a single email message to the user, or
logged together in a single file.

Each message that Bacula generates (i.e. that each daemon generates) has an associated type such as INFO,
WARNING, ERROR, FATAL, etc. Using the message resource, you can specify which message types you wish
to see and where they should be sent. In addition, a message may be sent to multiple destinations. For example,
you may want all error messages both logged as well as sent to you in an email. By defining multiple messages
resources, you can have different message handling for each type of Job (e.g. Full backups versus Incremental
backups).

In general, messages are attached to a Job and are included in the Job report. There are some rare cases, where
this is not possible, e.g. when no job is running, or if a communications error occurs between a daemon and the
director. In those cases, the message may remain in the system, and should be flushed at the end of the next Job.
However, since such messages are not attached to a Job, any that are mailed will be sent to /usr/lib/sendmail. On
some systems, such as FreeBSD, if your sendmail is in a different place, you may want to link it to the the above
location.

The records contained in a Messages resource consist of a destination specification followed by a list of
message−types in the format:

destination = message−type1, message−type2, message−type3, ...
or for those destinations that need and address specification (e.g. email):

destination = address = message−type1, message−type2, message−type3, ...
Where destination is one of a predefined set of keywords that define where the message is to be sent
(stdout, file, ...), message−type is one of a predefined set of keywords that define the type of message
generated by Bacula (ERROR, WARNING, FATAL, ...), and address varies according to the
destination keyword, but is typically and email address or a filename.

The following are the list of the possible record definitions that can be used in a message resource.

Messages
Start of the Messages records.

Name = <name>
The name of the Messages resource. The name you specify here will be used to tie this Messages
resource to a Job and/or to the daemon.

MailCommand = <command>
In the absence of this resource, Bacula will send all mail using the following command:
mail −s "Bacula Message" <recipients>

In many cases, depending on your machine, this command may not work. Using the MailCommand,
you can specify exactly how to send the mail. During the processing of the command, normally

Messages Resource 140

specified as a quoted string, the following substitutions will be used:

%% = %•
%c = Client's name•
%d = Director's name•
%e = Job Exit code (OK, Error, ...)•
%i = Job Id•
%j = Unique Job name•
%l = Job level•
%n = Job name•
%r = Recipients•
%t = Job type (e.g. Backup, ...)•

The following is the command I (Kern) use. Note, the whole command should appear on a single line in
the configuration file rather than split as is done here for presentation:

mailcommand = "/home/kern/bacula/bin/bsmtp −h mail.whitehouse.com −f \"\(Bacula\) %r\" −s
\"Bacula: %t %e of %c %l\" %r"

Note, the bsmtp program is provided as part of Bacula. For additional details, please see the bsmtp −−
Customizing Your Email Messages section of the Bacula Utility Programs chapter of this manual. Please
test any mailcommand that you use to ensure that your bsmtp gateway accepts the addressing form that
you use. Certain program such as Exim can be very selective as to what forms are permitted particularly
in the from part.

OperatorCommand = <command>
This resource specification is similar to the MailCommand except that it is used for Operator messages.
The substitutions performed for the MailCommand are also done for this command. Normally, you will
set this command to the same value as specified for the MailCommand.

Debug = <debug−level>
This sets the debug message level to the debug level, which is an integer. Higher debug levels cause
more debug information to be produced. You are requested not to use this record since it will be
deprecated.

<destination> = <message−type1>, <message−type2...
Where destination may be one of the following:

stdout
Send the message to standard output.

stderr
Send the message to standard error.

console
Send the message to the console (Bacula Console). These messages are held until the console
program connects to the Director.

<destination> = <address> = <message−type1>, <message−type2...
Where address depends on the destination, which may be one of the following:

director
Send the message to the Director whose name is given in the address field. Note, in the current
implementation, the Director Name is ignored, and the message is sent to the Director that started
the Job.

file

Bacula Storage Management System

Messages Resource 141

Send the message to the filename given in the address field. If the file already exists, it will be
overwritten.

append
Append the message to the filename given in the address field. If the file already exists, it will
be appended to. If the file does not exist, it will be created.

syslog
Send the message to the system log (syslog) using the facility specified in the address field.
Note, for the moment, the address field is ignored and the message is always sent to the
LOG_ERR facility.

mail
Send the message to the email addresses that are given as a comma separated list in the address
field. Mail messages are grouped together during a job and then sent as a single email message
when the job terminates. The advantage of this destination is that you are notified about every
Job that runs. However, if you backup 5 or 10 machines every night, the volume of email
messages can be important. Some users use filter programs such as procmail to automatically
file this email based on the Job termination code (see mailcommand).

mail on error
Send the message to the email addresses that are given as a comma separated list in the address
field if the Job terminates with an error condition. MailOnError messages are grouped together
during a job and then sent as a single email message when the job terminates. This destination
differs from the mail destination in that if the Job terminates normally, the message is totally
discarded (for this destination). If the Job terminates in error, it is emailed. By using other
destinations such as append you can ensure that even if the Job terminates normally, the output
information is saved.

operator
Send the message to the email addresses that are specified as a comma separated list in the
address field. This is similar to mail above, except that each message is sent as received. Thus
there is one email per message. This is most useful for mount messages (see below).

For any destination, the message−type field is a comma separated list of the following types or classes of
messages:

info
General information messages.

warning
Warning messages. Generally this is some unusual condition but not expected to be serious.

error
Non−fatal error messages. The job continues running. Any error message should be investigated
as it means that something went wrong.

fatal
Fatal error messages. Fatal errors cause the job to terminate.

terminate
Message generated when the daemon shuts down.

saved
Files saved normally.

notsaved
Files not saved because of some error. Usually because the file cannot be accessed (i.e. it does
not exist or is not mounted).

skipped
Files that were skipped because of a user supplied option such as an incremental backup or a file
that matches an exclusion pattern. This is not considered an error condition such as the files
listed for the notsaved type because the configuration file explicitly requests these types of files

Bacula Storage Management System

Messages Resource 142

to be skipped. For example, any unchanged file during an incremental backup, or any
subdirectory if the no recursion option is specified.

mount
Volume mount or intervention requests from the Storage daemon. These requests require a
specific operator intervention for the job to continue.

restored
The ls style listing generated for each file restored is sent to this message class.

all
All message types.

*security
Security info/warning messages (not currently implemented).

The following is an example of a valid Messages resource definition, where all messages except files explicitly
skipped or daemon termination messages are sent by email to enforcement@sec.com. In addition all mount
messages are sent to the operator (i.e. emailed to enforcement@sec.com). Finally all messages other than
explicitly skipped files and files saved are sent to the console:

Messages {
 Name = Standard
 mail = enforcement@sec.com = all, !skipped, !terminate
 operator = enforcement@sec.com = mount
 console = all, !skipped, !saved
}

With the exception of the email address (changed to avoid junk mail from robot's), Kern's Director's Messages
resource is as follows. Note, the mailcommand and operatorcommand are on a single line −− they had to be
split for this manual:

Messages {
 Name = Standard
 mailcommand = "bacula/bin/bsmtp −h mail.whitehouse.com \
 −f \"\(Bacula\) %r\" −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "bacula/bin/bsmtp −h mail.whitehouse.com \
 −f \"\(Bacula\) %r\" −s \"Bacula: Intervention needed \
 for %j\" %r"
 MailOnError = security@whitehouse.com = all, !skipped, \
 !terminate
 append = "bacula/bin/log" = all, !skipped, !terminate
 operator = security@whitehouse.com = mount
 console = all, !skipped, !saved
}

Storage Daemon Configuration Index Console Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Messages Resource 143

http://www.bacula.org/

Bacula 1.36 User's Guide

Messages Resource Index Monitor Configuration

Bacula Storage Management System

Messages Resource 144

Console Configuration

General

The Console configuration file is the simplest of all the configuration files, and in general, you should not need to
change it except for the password. It simply contains the information necessary to contact the Director or
Directors.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual.

The following Console Resource definition must be defined:

Director −− to define the Director's name and his access password. Note, you may define more than one
Director resource in the Console configuration file. If you do so, the Console program will ask you which
one you want to use.

•

The Director Resource

The Director resource defines the attributes of the Director running on the network. You may have multiple
Director resource specifications in a single Console configuration file. If you have more than one, you will be
prompted to choose one when you start the Console program.

Director
Start of the Director records.

Name = <name>
The director name used to select among different Directors, otherwise, this name is not used.

DIRPort = <port−number>
Specify the port to use to connect to the Director. This value will most likely already be set to the value
you specified on the −−with−base−port option of the ./configure command. This port must be identical
to the DIRport specified in the Director resource of the Director's configuration file. The default is 9101
so this record is not normally specified.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address used to connect to
the Director.

Password = <password>
Where the password is the password needed for the Director to accept the Console connection. This
password must be identical to the Password specified in the Director resource of the Director's
configuration file. This record is required.

An actual example might be:

Director {
 Name = HeadMan
 address = rufus.cats.com
 password = xyz1erploit
}

Console Configuration 145

The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the console. It permits you to define the
font that you want used to display in the main listing window.

ConsoleFont
Start of the ConsoleFont records.

Name = <name>
The name of the font.

Font = <X−Window Font Specification>
The string value given here defines the desired font. It is specified in the standard cryptic X Window
format. For example, the default specification is:
Font = "−misc−fixed−medium−r−normal−*−*−130−*−*−c−*−iso8859−1"

Thanks to Phil Stracchino for providing the code for this feature.

An actual example might be:

ConsoleFont {
 Name = Default
Font = "−misc−fixed−medium−r−normal−*−*−130−*−*−c−*−iso8859−1"
}

The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of consoles, which the administrator or user
can use to interact with the Director. These three kinds of consoles comprise three different security levels.

The first console type is an anonymous or default console, which has full privileges. There is no console
resource necessary for this type since the password is specified in the Director resource. This is the kind
of console that was initially implemented in versions prior to 1.33 and remains valid. Typically you
would use it only for administrators.

•

The second type of console, and new to version 1.33 and higher is a "named" console defined within a
Console resource in both the Director's configuration file and in the Console's configuration file. Both the
names and the passwords in these two entries must match much as is the case for Client programs.

•

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director's Console resource. Thus you can have multiple Consoles with different names and passwords,
sort of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing −− no commands what so ever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director's Console resource. Note, if you are specifying
such a console, you will want to put a null password in the Director resource.

The third type of console is similar to the above mentioned one in that it requires a Console resource
definition in both the Director and the Console. In addition, if the console name, provided on the Name =
directive, is the same as a Client name, the user of that console is permitted to use the SetIP command to
change the Address directive in the Director's client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non−fixed IP addresses) to "notify" the Director of
their current IP address.

•

Bacula Storage Management System

The ConsoleFont Resource 146

The Console resource is optional and need not be specified. However, if it is specified, you can use ACLs
(Access Control Lists) in the Director's configuration file to restrict the particular console (or user) to see only
information pertaining to his jobs or client machine.

The following configuration files were supplied by Phil Stracchino. For example, if we define the following in
the user's bconsole.conf file (or perhaps the wx−console.conf file):

 Director {
 Name = MyDirector
 DIRport = 9101
 Address = myserver
 Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.
 }

 Console {
 Name = restricted−user
 Password = "UntrustedUser"
 }

Where the Password in the Director section is deliberately incorrect, and the Console resource is given a name, in
this case restricted−client. Then in the Director's bacula−dir.conf file (not directly accessible by the user), we
define:

Console {
 Name = restricted−user
 Password = "UntrustedUser"
 JobACL = "Restricted Client Save"
 ClientACL = restricted−client
 StorageACL = main−storage
 ScheduleACL = *all*
 PoolACL = *all*
 FileSetACL = "Restricted Client's FileSet"
 CatalogACL = DefaultCatalog
 CommandACL = run
}

the user logging into the Director from his Console will get logged in as restricted−client, and he will only be
able to see or access a Job with the name Restricted Client Save a Client with the name restricted−client, a
Storage device main−storage, any Schedule or Pool, a FileSet named Restricted Client's File, a Catalog named
DefaultCatalog, and the only command he can use in the Console is the run command. In other words, this user
is rather limited in what he can see and do with Bacula.

Console Commands

For more details on running the console and its commands, please see the Bacula Console chapter of this manual.

Sample Console Configuration File

A example Console configuration file might be the following:

#
Bacula Console Configuration File
#

Bacula Storage Management System

Console Commands 147

Director {
 Name = HeadMan
 address = "my_machine.my_domain.com"
 Password = Console_password
}

Messages Resource Index Monitor Configuration

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Console Configuration Index Variable Expansion

Bacula Storage Management System

Console Commands 148

http://www.bacula.org/

Monitor Configuration

General

The Monitor configuration file is a stripped down version of the Director configuration file, mixed with a
Console configuration file. It simply contains the information necessary to contact Directors, Clients, and Storage
daemons you want to monitor.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual.

The following Monitor Resource definition must be defined:

Monitor −− to define the Monitor's name used to connect to all the daemons and the password used to
connect to the Directors. Note, you must not define more than one Monitor resource in the Monitor
configuration file.

•

At least one Client, Storage or Director resource, to define the daemons to monitor.•

The Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the network. The parameters you define
here must be configured as a Director resource in Clients and Storages configuration files, and as a Console
resource in Directors configuration files.

Monitor
Start of the Monitor records.

Name = <name>
Specify the Director name used to connect to Client and Storage, and the Console name used to connect
to Director. This record is required.

Password = <password>
Where the password is the password needed for Directors to accept the Console connection. This
password must be identical to the Password specified in the Console resource of the Director's
configuration file. This record is required if you wish to monitor Directors.

Refresh Interval = <time>
Specifies the time to wait between status requests to each daemon. It can't be set to less than 1 second, or
more than 10 minutes, and the default value is 5 seconds.

The Director Resource

The Director resource defines the attributes of the Directors that are monitored by this Monitor.

As you are not permitted to define a Password in this resource, to avoid obtaining full Director privileges, you
must create a Console resource in the Director's configuration file, using the Console Name and Password
defined in the Monitor resource. To avoid security problems, you should configure this Console resource to allow
access to no others daemon, and permit the use of only two commands: status and .status (see below for an
example).

You may have multiple Director resource specifications in a single Monitor configuration file.

Monitor Configuration 149

Director
Start of the Director records.

Name = <name>
The Director name used to identify the Director in the list of monitored daemons. It is not required to be
the same as defined in the Director's configuration file. This record is required.

DIRPort = <port−number>
Specify the port to use to connect to the Director. This value will most likely already be set to the value
you specified on the −−with−base−port option of the ./configure command. This port must be identical
to the DIRport specified in the Director resource of the Director's configuration file. The default is 9101
so this record is not normally specified.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address used to connect to
the Director. This record is required.

The Client Resource

The Client resource defines the attributes of the Clients that are monitored by this Monitor.

You must create a Director resource in the Client's configuration file, using the Director Name defined in the
Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

Client (or FileDaemon)
Start of the Client records.

Name = <name>
The Client name used to identify the Director in the list of monitored daemons. It is not required to be the
same as defined in the Client's configuration file. This record is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bacula File daemon. This record is required.

FD Port = <port−number>
Where the port is a port number at which the Bacula File daemon can be contacted. The default is 9102.

Password = <password>
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this Director.
This record is required.

The Storage Resource

The Storage resource defines the attributes of the Storages that are monitored by this Monitor.

You must create a Director resource in the Storage's configuration file, using the Director Name defined in the
Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

Storage

Bacula Storage Management System

The Client Resource 150

Start of the Storage records.
Name = <name>

The Storage name used to identify the Director in the list of monitored daemons. It is not required to be
the same as defined in the Storage's configuration file. This record is required.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bacula Storage daemon. This record is required.

SD Port = <port>
Where port is the port to use to contact the storage daemon for information and to start jobs. This same
port number must appear in the Storage resource of the Storage daemon's configuration file. The default
is 9103.

Password = <password>
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon's configuration file. This
record is required.

Sample Monitor configuration file and related daemons'
configuration records.

A example Monitor configuration file might be the following:

#
Bacula Tray Monitor Configuration File
#

Monitor {
 Name = rufus−mon # password for Directors
 Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"
 RefreshInterval = 10 seconds
}

Client {
 Name = rufus−fd
 Address = rufus
 FDPort = 9102 # password for FileDaemon
 Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"
}

Storage {
 Name = rufus−sd
 Address = rufus
 SDPort = 9103 # password for StorageDaemon
 Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"
}

Director {
 Name = rufus−dir
 DIRport = 9101
 address = rufus
}

Sample File daemon's Director record.

Click here to see the full example.

Bacula Storage Management System

Sample Monitor configuration file and related daemons' configuration records. 151

#
Restricted Director, used by tray−monitor to get the
status of the file daemon
#
Director {
 Name = rufus−mon
 Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"
 Monitor = yes
}

Sample Storage daemon's Director record.

Click here to see the full example.

#
Restricted Director, used by tray−monitor to get the
status of the storage daemon
#
Director {
 Name = rufus−mon
 Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"
 Monitor = yes
}

Sample Director's Console record.

Click here to see the full example.

#
Restricted console used by tray−monitor to get the status of the director
#
Console {
 Name = Monitor
 Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"
 CommandACL = status, .status
}

Console Configuration Index Variable Expansion

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Console Configuration Index The Console Program

Bacula Storage Management System

Sample Storage daemon's Director record. 152

http://www.bacula.org/

Variable Expansion
Variable expansion is somewhat similar to Unix shell variable expansion. Currently (version 1.31), it is used only
in format labels, but in the future, it will most likely be used in more places.

General Functionality

This is basically a string expansion capability that permits referencing variables, indexing arrays, conditional
replacement of variables, case conversion, substring selection, regular expression matching and replacement,
character class replacement, padding strings, repeated expansion in a user controlled loop, support of arithmetic
expressions in the loop start, step and end conditions, and recursive expansion.

When using varaiable expansion characters in a Volume Label Format record, the format should always be
enclosed in double quotes (").

For example, ${HOME} will be replaced by your home directory as defined in the environment. If you have
defined the variable xxx to be Test, then the reference ${xxx:p/7/Y/r} will right pad the contents of xxx to a
length of seven characters filling with the character Y giving YYYTest.

Bacula Variables

Within Bacula, there are three main classes of variables with some minor variations within the classes. The
classes are:

Counters
Counters are defined by the Counter resources in the Director's conf file. The counter can either be a
temporary counter that lasts for the duration of Bacula's execution, or it can be a variable that is stored in
the catalog, and thus retains its value from one Bacula execution to another. Counter variables may be
incremented by postfixing a plus sign (+ after the variable name).

Internal Variables
Internal variables are read−only, and may be related to the current job (i.e. Job name), or may be special
variables such as the date and time. The following variables are available:

Year −− the full year♦
Month −− the current month 1−12♦
Day −− the day of the month 1−31♦
Hour −− the hour 0−24♦
Minute −− the current minute 0−59♦
Second −− the current second 0−59♦
WeekDay −− the current day of the week 0−6 with 0 being Sunday♦
Job −− the job name♦
Dir −− the Director's name♦
Level −− the Job Level♦
Type −− the Job type♦
JobId −− the JobId♦
JobName −− the unique job name composed of Job and date♦
Storage −− the Storage daemon's name♦
Client −− the Client's name♦
NumVols −− the current number of Volumes in the Pool♦

Variable Expansion 153

Pool −− the Pool name♦
Catalog −− the Catalog name♦
MediaType −− the Media Type♦

Environment Variables
Environment variables are read−only, and must be defined in the environment prior to executing Bacula.
Environment variables may be either scalar or an array, where the elements of the array are referenced by
subscripting the variable name (e.g. ${Months[3]}). Environment variable arrays are defined by
separating the elements with a vertical bar (|), thus set Months="Jan|Feb|Mar|Apr|..." defines an
environment variable named Month that will be treated as an array, and the reference ${Months[3]} will
yield Mar. The elements of the array can have differing lengths.

Full Syntax

Since the syntax is quite extensive, below, you will find the pseudo BNF. The special characters have the
following meaning:

 ::= definition
 () grouping if the parens are not quoted
 | separates alternatives
 '/' literal / (or any other character)
 CAPS a character or character sequence
 * preceding item can be repeated zero or more times
 ? preceding item can appear zero or one time
 + preceding item must appear one or more times

And the pseudo BNF describing the syntax is:

 input ::= (TEXT
 | variable
 | INDEX_OPEN input INDEX_CLOSE (loop_limits)?
)*

 variable ::= DELIM_INIT (name|expression)

 name ::= (NAME_CHARS)+

 expression ::= DELIM_OPEN
 (name|variable)+
 (INDEX_OPEN num_exp INDEX_CLOSE)?
 (':' command)*
 DELIM_CLOSE

 command ::= '−' (TEXT_EXP|variable)+
 | '+' (TEXT_EXP|variable)+
 | 'o' NUMBER ('−'|',') (NUMBER)?
 | '#'
 | '*' (TEXT_EXP|variable)+
 | 's' '/' (TEXT_PATTERN)+
 '/' (variable|TEXT_SUBST)*
 '/' ('m'|'g'|'i'|'t')*
 | 'y' '/' (variable|TEXT_SUBST)+
 '/' (variable|TEXT_SUBST)*
 '/'
 | 'p' '/' NUMBER
 '/' (variable|TEXT_SUBST)*
 '/' ('r'|'l'|'c')
 | '%' (name|variable)+

Bacula Storage Management System

Full Syntax 154

 ('(' (TEXT_ARGS)? ')')?
 | 'l'
 | 'u'

 num_exp ::= operand
 | operand ('+'|'−'|'*'|'/'|'%') num_exp

 operand ::= ('+'|'−')? NUMBER
 | INDEX_MARK
 | '(' num_exp ')'
 | variable

 loop_limits ::= DELIM_OPEN
 (num_exp)? ',' (num_exp)? (',' (num_exp)?)?
 DELIM_CLOSE

 NUMBER ::= ('0'|...|'9')+

 TEXT_PATTERN::= (^('/'))+
 TEXT_SUBST ::= (^(DELIM_INIT|'/'))+
 TEXT_ARGS ::= (^(DELIM_INIT|')'))+
 TEXT_EXP ::= (^(DELIM_INIT|DELIM_CLOSE|':'|'+'))+
 TEXT ::= (^(DELIM_INIT|INDEX_OPEN|INDEX_CLOSE))+

 DELIM_INIT ::= '$'
 DELIM_OPEN ::= '{'
 DELIM_CLOSE ::= '}'
 INDEX_OPEN ::= '['
 INDEX_CLOSE ::= ']'
 INDEX_MARK ::= '#'
 NAME_CHARS ::= 'a'|...|'z'|'A'|...|'Z'|'0'|...|'9'

Semantics

The items listed in command above, which always follow a colon (:) have the following meanings:

 − perform substitution if variable is empty
 + perform substitution if variable is not empty
 o cut out substring of the variable value
 # length of the variable value
 * substitute empty string if the variable value is not empty,
 otherwise substitute the trailing parameter
 s regular expression search and replace. The trailing
 options are: m = multiline, i = case insensitive,
 g = global, t = plain text (no regexp)
 y transpose characters from class A to class B
 p pad variable to l = left, r = right or c = center,
 with second value.
 % special function call (none implemented)
 l lower case the variable value
 u upper case the variable value

The loop_limits are start, step, and end values.

A counter variable name followed immediately by a plus (+) will cause the counter to be incremented by one.

Bacula Storage Management System

Semantics 155

Examples

To create an ISO date:

 DLT−${Year}−${Month:p/2/0/r}−${Day:p/2/0/r}

on 20 June 2003 would give DLT−2003−06−20

If you set the environment variable mon to January|February|March|April|May|...

 File−${mon[${Month}]}/${Day}/${Year}

on the first of March would give File−March/1/2003

Console Configuration Index The Console Program

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Configuring Bacula Index Critical Items Before Going Production

Bacula Storage Management System

Examples 156

http://www.bacula.org/

Bacula Console

General

The Bacula Console (sometimes called the User Agent) is a program that allows the user or the System
Administrator, to interact with the Bacula Director daemon while the daemon is running.

The current Bacula Console comes in two versions: a shell interface (TTY style), and a GNOME GUI interface.
Both permit the administrator or authorized users to interact with Bacula. You can determine the status of a
particular job, examine the contents of the Catalog as well as perform certain tape manipulations with the
Console program.

In addition, there is a wx−console built with wxWidgets that allows a graphic restore of files. As of version
1.34.1 it is in an early stage of development, but it quite useful.

Since the Console program interacts with the Director by the network, your Console and Director programs do
not necessarily need to run on the same machine.

In fact, a certain minimal knowledge of the Console program is needed in order for Bacula to be able to write on
more than one tape, because when Bacula requests a new tape, it waits until the user, via the Console program,
indicates that the new tape is mounted.

Configuration

When the Console starts, it reads a standard Bacula configuration file named bconsole.conf or
gnome−console.conf in the case of the GNOME Console version. This file allows default configuration of the
Console, and at the current time, the only Resource Record defined is the Director resource, which gives the
Console the name and address of the Director. For more information on configuration of the Console program,
please see the Console Configuration File Chapter of this document.

Running the Console Program

After launching the Console program (bconsole), it will prompt you for the next command with an asterisk (*).
(Note, in the GNOME version, the prompt is not present; you simply enter the commands you want in the
command text box at the bottom of the screen.) Generally, for all commands, you can simply enter the command
name and the Console program will prompt you for the necessary arguments. Alternatively, in most cases, you
may enter the command followed by arguments. The general format is:

 <command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed below (usually
followed by an argument); and argument is the value. The command may be abbreviated to the shortest unique
form. If two commands have the same starting letters, the one that will be selected is the one that appears first in
the help listing. If you want the second command, simply spell out the full command. None of the keywords
following the command may be abbreviated.

For example:

list files jobid=23

Bacula Console 157

will list all files saved for JobId 23. Or:

show pools

will display all the Pool resource records.

Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it waits until the
Director acknowledges the command. If the Director is already doing a lengthy command (e.g. prune), it may
take some time. If you want to immediately terminate the Console program, enter the .quit command.

There is currently no way to interrupt a Console command once issued (i.e. ctl−C does not work). However, if
you are at a prompt that is asking you to select one of several possibilities and you would like to abort the
command, you can enter a period (.), and in most cases, you will either be returned to the main command prompt
or if appropriate the previous prompt (in the case of nested prompts). In a few places such as where it is asking
for a Volume name, the period will be taken to be the Volume name. In that case, you will most likely be able to
cancel at the next prompt.

Alphabetic List of Console Commands

The following commands are currently implemented:

add [pool=<pool−name> storage=<storage> jobid=<JobId>]
This command is used to add Volumes to an existing Pool. The Volume names entered are placed in the
Catalog and thus become available for backup operations. Normally, the label command is used rather
than this command because the label command labels the physical media (tape) and does the equivalent
of the add command. This command affects only the Catalog and not the physical media (data on
Volumes). The physical media must exist and be labeled before use (usually with the label command).
This command can, however, be useful if you wish to add a number of Volumes to the Pool that will be
physically labeled at a later time. It can also be useful if you are importing a tape from another site.
Please see the label command below for the list of legal characters in a Volume name.

autodisplay on/off
This command accepts on or off as an argument, and turns auto−display of messages on or off
respectively. The default for the console program is off, which means that you will be notified when
there are console messages pending, but they will not automatically be displayed. The default for the
gnome−console program is on, which means that messages will be displayed when they are received
(usually within 5 seconds of them being generated).
When autodisplay is turned off, you must explicitly retrieve the messages with the messages command.
When autodisplay is turned on, the messages will be displayed on the console as they are received.

automount on/off
This command accepts on or off as the argument, and turns auto−mounting of the tape after a label
command on or off respectively. The default is on. If automount is turned off, you must explicitly
mount the tape after a label command to use it.

cancel [jobid=<number> job=<job−name>]
This command is used to cancel a job and accepts jobid=nnn or job=xxx as an argument where nnn is
replaced by the JobId and xxx is replaced by the job name. If you do not specify a keyword, the Console
program will prompt you with the names of all the active jobs allowing you to choose one.

Bacula Storage Management System

Stopping the Console Program 158

Once a Job is marked to be canceled, it may take a bit of time (generally within a minute) before it
actually terminates, depending on what operations it is doing.

create [pool=<pool−name>]
This command is used to create a Pool record in the database using the Pool resource record defined in
the Director's configuration file. So in a sense, this command simply transfers the information from the
Pool resource in the configuration file into the Catalog. Normally this command is done automatically for
you when the Director starts providing the Pool is referenced within a Job resource. If you use this
command on an existing Pool, it will automatically update the Catalog to have the same information as
the Pool resource. After creating a Pool, you will most likely use the label command to label one or more
volumes and add their names to the Media database.
When starting a Job, if Bacula determines that there is no Pool record in the database, but there is a Pool
resource of the appropriate name, it will create it for you. If you want the Pool record to appear in the
database immediately, simply use this command to force it to be created.

delete [volume=<vol−name> pool=<pool−name> job jobid=<id>]
The delete command is used to delete a Volume, Pool or Job record from the Catalog as well as all
associated Volume records that were created. This command operates only on the Catalog database and
has no effect on the actual data written to a Volume. This command can be dangerous and we strongly
recommend that you do not use it unless you know what you are doing.
If the keyword Volume appears on the command line, the named Volume will be deleted from the
catalog, if the keyword Pool appears on the command line, a Pool will be deleted, and if the keyword
Job appears on the command line, a Job and all its associated records (File and JobMedia) will be deleted
from the catalog. The full form of this command is:

delete pool=<pool−name>

or

delete volume=<volume−name> pool=<pool−name> or

delete JobId=<job−id> JobId=<job−id2> ... or

delete Job JobId=n,m,o−r,t ...

The first form deletes a Pool record from the catalog database. The second form deletes a Volume record
from the specified pool in the catalog database. The third form delete the specified Job record from the
catalog database. The last form deletes JobId records for JobIds n,m,o,p, q,r, and t. When each one of the
n,m,... is, of course, a number.

estimate
Using this command, you can get an idea how many files will be backed up, or if you are unsure about
your Include statements in your FileSet, you can test them without doing an actual backup. The default is
to assume a Full backup. However, you can override this by specifying a level=Incremental or
level=Differential on the command line. A Job name must be specified or you will be prompted for one,
and optionally a Client and FileSet may be specified on the command line. It then contacts the client
which computes the number of files and bytes that would be backed up. Please note that this is an
estimated calculated from the number of blocks in the file rather than by reading the actual bytes. As
such, the estimated backup size will generally be larger than an actual backup.
Optionally you may specify the keyword listing in which case, all the files to be backed up will be listed.
Note, it could take quite some time to display them if the backup is large. The full form is:

Bacula Storage Management System

Stopping the Console Program 159

estimate job=<job−name> listing client=<client−name> fileset=<fileset−name> level=<level−name>

Specification of the job is sufficient, but you can also override the client, fileset and/or level by
specifying them on the estimate command line.

As an example, you might do:

 @output /tmp/listing
 estimate job=NightlySave listing level=Incremental
 @output

which will do a full listing of all files to be backed up for the Job NightlySave during an Incremental
save and put it in the file /tmp/listing.

help
This command displays the list of commands available.

label
This command is used to label physical volumes. The full form of this command is:
label storage=<storage−name> volume=<volume−name> slot=<slot>

If you leave out any part, you will be prompted for it. The media type is automatically taken from the
Storage resource definition that you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the tape be labeled. If the tape labeling
is successful, the Console program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (−), underscore (_),
colon (:), and period (.). All other characters including a space are illegal. This restriction is to ensure
good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bacula will get read I/O error when it attempts to ensure that the
tape is already labeled. If you wish to avoid getting these messages, please write and EOF mark on your
tape before attempting to label it:

 mt rewind
 mt weof

The label command can fail for a number of reasons:

The Volume name you specify is already in the Volume database.1.
The Storage daemon has a tape already mounted on the device, in which case you must unmount
the device, insert a blank tape, then do the label command.

2.

The tape in the device is already a Bacula labeled tape. (Bacula will never relabel a Bacula
labeled tape unless it is recycled and you use the relabel command).

3.

There is no tape in the drive.4.
There are two ways to relabel a volume that already has a Bacula label. The brute force method is to
write an end of file mark on the tape using the system mt program, something like the following:

 mt −f /dev/st0 rewind
 mt −f /dev/st0 weof

Bacula Storage Management System

Stopping the Console Program 160

Then you use the label command to add a new label. However, this could leave traces of the old volume
in the catalog.

The preferable method to relabel a tape is to first purge the volume, either automatically, or explicitly
with the purge command, then use the relabel command described below.

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after
another by using the label barcodes command. For each tape in the changer containing a barcode,
Bacula will mount the tape and then label it with the same name as the barcode. An appropriate Media
record will also be created in the catalog. Any barcode that begins with the same characters as specified
on the "CleaningPrefix=xxx" command, will be treated as a cleaning tape, and will not be labeled. For
example with:

 Pool {
 Name ...
 Cleaning Prefix = "CLN"
 }

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.
Note, the full form of the command is:

update storage=xxx pool=yyy slots=1−5,10 barcodes

list
The list command lists the requested contents of the Catalog. The various fields of each record are listed
on a single line. If there The various forms of the list command are:
list jobs

list jobid=<id>

list job=<job−name>

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job−name>

list files jobid=<id>

list files job=<job−name>

list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

Bacula Storage Management System

Stopping the Console Program 161

list volumes pool=<pool−name>

list volumes job=<job−name>

list volume=<volume−name> list nextvolume job=<job−name>

list nextvol job=<job−name>

What most of the above commands do should be more or less obvious. In general if you do not specify
all the command line arguments, the command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by the specified job. You should be
aware that exactly what Volume will be used depends on a lot of factors including the time and what a
prior job will do. It may fill a tape that is not full when you issue this command. As a consequence, this
command will give you a good estimate of what Volume will be used but not a definitive answer. In
addition, this command may have certain side effect because it runs through the same algorithm as a job,
which means it may automatically purge or recycle a Volume.

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding
them to the query.sql file. However, this takes some knowledge of programming SQL. Please see the
query command below for additional information. See below for listing the full contents of a catalog
record with the llist command.

As an example, the command list pools might produce the following output:

+−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |
+−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+
| 1 | Default | 0 | 0 | Backup | * |
| 2 | Recycle | 0 | 8 | Backup | File |
+−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+

As mentioned above, the list command lists what is in the database. Some things are put into the database
immediately when Bacula starts up, but in general, most things are put in only when they are first used,
which is the case for a Client as with Job records, etc.

Bacula should create a client record in the database the first time you run a job for that client. Doing a
status will not cause a database record to be created. The client database record will be created whether
or not job fails, but it must at least start. When the Client is actually contacted, additional info from the
client will be added to the client record (a "uname −a" output).

If you want to see what Client resources you have available in your conf file, you use the Console
command show clients.

llist
The llist or "long list" command takes all the same arguments that the list command described above
does. The difference is that the llist command list the full contents of each database record selected. It
does so by listing the various fields of the record vertically, with one field per line. It is possible to
produce a very large number of output lines with this command.
If instead of the list pools as in the example above, you enter llist pools you might get the following
output:

Bacula Storage Management System

Stopping the Console Program 162

 PoolId: 1
 Name: Default
 NumVols: 0
 MaxVols: 0
 UseOnce: 0
 UseCatalog: 1
 AcceptAnyVolume: 1
 VolRetention: 1,296,000
 VolUseDuration: 86,400
 MaxVolJobs: 0
 MaxVolBytes: 0
 AutoPrune: 0
 Recycle: 1
 PoolType: Backup
 LabelFormat: *

 PoolId: 2
 Name: Recycle
 NumVols: 0
 MaxVols: 8
 UseOnce: 0
 UseCatalog: 1
 AcceptAnyVolume: 1
 VolRetention: 3,600
 VolUseDuration: 3,600
 MaxVolJobs: 1
 MaxVolBytes: 0
 AutoPrune: 0
 Recycle: 1
 PoolType: Backup
 LabelFormat: File

messages
This command causes any pending console messages to be immediately displayed.

mount
The mount command is used to get Bacula to read a volume on a physical device. It is a way to tell
Bacula that you have mounted a tape and that Bacula should examine the tape. This command is used
only after there was no Volume in a drive and Bacula requests you to mount a new Volume or when you
have specifically unmounted a Volume with the unmount console command, which causes Bacula to
close the drive. If you have an autoloader, the mount command will not cause Bacula to operate the
autoloader. The various forms of the mount command are:
mount storage=<storage−name>

mount [jobid=<id> | job=<job−name>]

If you have specified Automatic Mount = yes in the Storage daemon's Device resource, under most
circumstances, Bacula will automatically access the Volume unless you have explicitly unmounted it in
the Console program.

prune
The Prune command allows you to safely remove expired database records from Jobs and Volumes. This
command works only on the Catalog database and does not affect data written to Volumes. In all cases,
the Prune command applies a retention period to the specified records. You can Prune expired File
entries from Job records; you can Prune expired Job records from the database, and you can Prune both
expired Job and File records from specified Volumes.

Bacula Storage Management System

Stopping the Console Program 163

prune files|jobs|volume client=<client−name> volume=<volume−name>

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the pruning will not
take place.

purge
The Purge command will delete associated Catalog database records from Jobs and Volumes without
considering the retention period. Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can delete catalog records associated
with current backups of files, and we recommend that you do not use it unless you know what you are
doing. The permitted forms of purge are: purge files
jobid=<jobid>|job=<job−name>|client=<client−name>
purge jobs client=<client−name> (of all jobs)

purge volume|volume=<vol−name> (of all jobs)

For the purge command to work on Volume Catalog database records the VolStatus must be Append,
Full, Used, or Error.

The actual data written to the Volume will be unaffected by this command.

relabel
This command is used to label physical volumes. The full form of this command is:
relabel storage=<storage−name> volume=<newvolume−name> name=<old−volume−name>

If you leave out any part, you will be prompted for it. In order for the Volume (old−volume−name) to be
relabeled, it must be in the catalog, and the volume status must be marked Purged or Recycle. This
happens automatically as a result of applying retention periods, or you may explicitly purge the volume
using the purge command.

Once the volume is physically relabeled, the old data written on the Volume is lost and cannot be
recovered.

release
This command is used to cause the Storage daemon to rewind (release) the current tape in the drive, and
to re−read the Volume label the next time the tape is used.
release storage=<storage−name>

After a release command, the device is still kept open by Bacula (unless Always Open is set to No in the
Storage Daemon's configuration) so it cannot be used by another program. However, with some tape
drives, the operator can remove the current tape and to insert a different one, and when the next Job
starts, Bacula will know to re−read the tape label to find out what tape is mounted. If you want to be able
to use the drive with another program (e.g. mt), you must use the unmount command to cause Bacula to
completely release (close) the device.

restore
The restore command allows you to select one or more Jobs (JobIds) to be restored using various
methods. Once the JobIds are selected, the File records for those Jobs are placed in an internal Bacula
directory tree, and the restore enters a file selection mode that allows you to interactively walk up and
down the file tree selecting individual files to be restored. This mode is somewhat similar to the standard
Unix restore program's interactive file selection mode.

Bacula Storage Management System

Stopping the Console Program 164

restore storage=<storage−name> client=<client−name> where=<path> pool=<pool−name>
fileset=<fileset−name> select current all done

Where current, if specified, tells the restore command to automatically select a restore to the most
current backup. If not specified, you will be prompted. The all specification tells the restore command to
restore all files. If it is not specified, you will be prompted for the files to restore. For details of the
restore command, please see the Restore Chapter of this manual.

run
This command allows you to schedule jobs to be run immediately. The full form of the command is:
run job=<job−name> client=<client−name> fileset=<FileSet−name> level=<level−keyword>
storage=<storage−name> where=<directory−prefix> when=<universal−time−specification> yes

Any information that is needed but not specified will be listed for selection, and before starting the job,
you will be prompted to accept, reject, or modify the parameters of the job to be run, unless you have
specified yes, in which case the job will be immediately sent to the scheduler.

On my system, when I enter a run command, I get the following prompt:

A job name must be specified.
The defined Job resources are:
 1: Matou
 2: Polymatou
 3: Rufus
 4: Minimatou
 5: Minou
 6: PmatouVerify
 7: MatouVerify
 8: RufusVerify
 9: Watchdog
Select Job resource (1−9):

If I then select number 5, I am prompted with:

Run Backup job
JobName: Minou
FileSet: Minou Full Set
Level: Incremental
Client: Minou
Storage: DLTDrive
Pool: Default
When: 2003−04−23 17:08:18
OK to run? (yes/mod/no):

If I now enter yes, the Job will be run. If I enter mod, I will be presented with the following prompt.

Parameters to modify:
 1: Level
 2: Storage
 3: Job
 4: FileSet
 5: Client
 6: When
 7: Pool

Bacula Storage Management System

Stopping the Console Program 165

Select parameter to modify (1−7):

If you wish to start a job at a later time, you can do so by setting the When time. Use the mod option and
select When (no. 6). Then enter the desired start time in YYYY−MM−DD HH:MM:SS format.

setdebug
This command is used to set the debug level in each daemon. The form of this command is:
setdebug level=nn [trace=0/1 client=<client−name> | dir | director | storage=<storage−name> | all]

If trace=1 is set, then the tracing will be enabled, and the daemon where the setdebug applies will be
placed in trace mode, and all debug output will go to the file bacula.trace in the current directory of the
daemon. Normally, tracing is used only for Win32 clients where the debug output cannot be written to a
terminal or redirected to a file. When tracing, each debug output message is appended to the trace file.
You must explicitly delete the file when you are done.

show
The show command will list the Director's resource records as defined in the Director's configuration file
(normally bacula−dir.conf). This command is used mainly for debugging purposes by developers. The
following keywords are accepted on the show command line: directors, clients, counters, jobs, storages,
catalogs, schedules, filesets, groups, pools, messages, all, help. Please don't confuse this command with
the list, which displays the contents of the catalog.

sqlquery
The sqlquery command puts the Console program into SQL query mode where each line you enter is
concatenated to the previous line until a semicolon (;) is seen. The semicolon terminates the command,
which is then passed directly to the SQL database engine. When the output from the SQL engine is
displayed, the formation of a new SQL command begins. To terminate SQL query mode and return to the
Console command prompt, you enter a period (.) in column 1.
Using this command, you can query the SQL catalog database directly. Note you should really know
what you are doing otherwise you could damage the catalog database. See the query command below for
simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL or SQLite), you will have somewhat
different SQL commands available. For more detailed information, please refer to the MySQL or SQLite
documentation.

status
This command will display the status of the next jobs that are scheduled during the next twenty−four
hours as well as the status of currently running jobs. The full form of this command is:
status [all | dir=<dir−name> | director | client=<client−name> | storage=<storage−name>]

If you do a status dir, the console will list any currently running jobs, a summary of all jobs scheduled to
be run in the next 24 hours, and a listing of the last 10 terminated jobs with their statuses. The scheduled
jobs summary will include the Volume name to be used. You should be aware of two things: 1. to obtain
the volume name, the code goes through the same code that will be used when the job runs, which means
that it may prune or recycle a Volume; 2. The Volume listed is only a best guess. The Volume actually
used may be different because of the time difference (more durations may expire when the job runs) and
another job could completely fill the Volume requiring a new one.

In the Running Jobs listing, you may find the following types of information:

2507 Catalog MatouVerify.2004−03−13_05.05.02 is waiting execution
5349 Full CatalogBackup.2004−03−13_01.10.00 is waiting for higher

Bacula Storage Management System

Stopping the Console Program 166

 priority jobs to finish
5348 Differe Minou.2004−03−13_01.05.09 is waiting on max Storage jobs
5343 Full Rufus.2004−03−13_01.05.04 is running

Looking at the above listing from bottom to top, obviously JobId 5343 (Rufus) is running. JobId 5348
(Minou) is waiting for JobId 5343 to finish because it is using the Storage resource, hence the "waiting
on max Storage jobs". JobId 5349 has a lower priority than all the other jobs so it is waiting for higher
priority jobs to finish, and finally, JobId 2508 (MatouVerify) is waiting because only one job can run at a
time, hence it is simply "waiting execution

unmount
This command causes the indicated Bacula Storage daemon to unmount the specified device. The forms
of the command are the same as the mount command:
unmount storage=<storage−name>

unmount [jobid=<id> | job=<job−name>]

update
This command will update catalog for either a specific Pool record, a Volume record, or the Slots in an
autochanger with barcode capability. In the case of updating a Pool record, the new information will be
automatically taken from the corresponding Director's configuration resource record. It can be used to
increase the maximum number of volumes permitted or to set a maximum number of volumes. The
following main keywords may be specified:
media, volume, pool, slots

In the case of updating a Volume, you will be prompted for which value you wish to change. The
following Volume parameters may be changed:

 Volume Status
 Volume Retention Period
 Volume Use Duration
 Maximum Volume Jobs
 Maximum Volume Files
 Maximum Volume Bytes
 Recycle Flag
 Slot
 InChanger Flag
 Pool
 Volume Files
 Volume from Pool
 All Volumes from Pool

For slots update slots, Bacula will obtain a list of slots and their barcodes from the Storage daemon, and
for each barcode found, it will automatically update the slot in the catalog Media record to correspond to
the new value. This is very useful if you have moved cassettes in the magazine, or if you have removed
the magazine and inserted a different one. As the slot of each Volume is updated, the InChanger flag for
that Volume will also be set, and any other Volumes in the Pool will have their InChanger flag turned
off. This permits Bacula to know what magazine (tape holder) is currently in the autochanger.

If you do not have barcodes, you can accomplish the same thing in version 1.33 and later by using the
update slots scan command. The scan keyword tells Bacula to physically mount each tape and to read
its VolumeName.

For Pool update pool, Bacula will move the Volume record from its existing poole to the pool specified.

Bacula Storage Management System

Stopping the Console Program 167

For Volume from Pool and All Volumes from Pool, the following values are updated from the Pool
record: Recycle, VolRetention, VolUseDuration, MaxVolJobs, MaxVolFiles, and MaxVolBytes.

The full form of the update command with all command line arguments is:

 update volume=xxx pool=yyy slots volstatus=xxx VolRetention=ddd
 VolUse=ddd MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes/no
 slot=nnn

use
This command allows you to specify which Catalog database to use. Normally, you will be using only
one database so this will be done automatically. In the case that you are using more than one database,
you can use this command to switch from one to another.
use <database−name>

var
This command takes a string or quoted string and does variable expansion on it the same way variable
expansion is done on the LabelFormat string. Thus, for the most part, you can test your LabelFormat
strings. The difference between the var command and the actual LabelFormat process is that during the
var command, no job is running so "dummy" values are used in place of Job specific variables.
Generally, however, you will get a good idea of what is going to happen in the real case.

version
The command prints the Director's version.

quit
This command terminates the console program. The console program sends the quit request to the
Director and waits for acknowledgment. If the Director is busy doing a previous command for you that
has not terminated, it may take some time. You may quit immediately by issuing the .quit command (i.e.
quit preceded by a period).

query
This command reads a predefined SQL query from the query file (the name and location of the query file
is defined with the QueryFile resource record in the Director's configuration file). You are prompted to
select a query from the file, and possibly enter one or more parameters, then the command is submitted to
the Catalog database SQL engine.
The following queries are currently available (version 1.24):

Available queries:
 1: List Job totals:
 2: List where a file is saved:
 3: List where the most recent copies of a file are saved:
 4: List total files/bytes by Job:
 5: List total files/bytes by Volume:
 6: List last 20 Full Backups for a Client:
 7: List Volumes used by selected JobId:
 8: List Volumes to Restore All Files:
 9: List where a File is saved:
Choose a query (1−9):

exit
This command terminates the console program.

wait
The wait command causes the Director to pause until there are no jobs running. This command is useful
in a batch situation such as regression testing where you wish to start a job and wait until that job

Bacula Storage Management System

Stopping the Console Program 168

completes before continuing.

Special dot Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to be used either by
batch programs or graphical user interface front−ends. They are not normally used by interactive users. Once
GUI development begins, this list will be considerably expanded. The following is the list of dot commands:

.die cause the Director to segment fault (for debugging)

.jobs list all job names

.filesets list all fileset names

.clients list all client names

.msgs return any queued messages

.quit quit

.exit quit

Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the Director, which may
be on another machine, to be executed. However, there is a small list of at commands, all beginning with a at
character (@), that will not be sent to the Director, but rather interpreted by the Console program directly. Note,
these commands are implemented only in the tty console program and not in the GNOME Console. These
commands are:

@input <filename>
Read and execute the commands contained in the file specified.

@output <filename> w/a
Send all following output to the filename specified either overwriting the file (w) or appending to the file
(a). To redirect the output to the terminal, simply enter @output without a filename specification.
WARNING: be careful not to overwrite a valid file. A typical example during a regression test might be:
 @output /dev/null
 commands ...
 @output

@tee <filename> w/a
Send all subsequent output to both the specified file and the terminal. It is turned off by specifying @tee
or @output without a filename.

@sleep <seconds>
Sleep the specified number of seconds.

@time
Print the current time and date.

@version
Print the console's version.

@quit
quit

@exit
quit

@# anything
Comment

Bacula Storage Management System

Special dot Commands 169

Running the Console Program from a Shell Script

You can automate many Console tasks by running the console program from a shell script. For example,
if you have created a file containing the following commands:

 ./bconsole −c ./bconsole.conf <<END_OF_DATA
 unmount storage=DDS−4
 quit
 END_OF_DATA

when that file is executed, it will unmount the current DDS−4 storage device. You might want to run this
command during a Job by using the RunBeforeJob or RunAfterJob records.

It is also possible to run the Console program from file input where the file contains the commands as
follows:

./bconsole −c ./bconsole.conf <filename

where the file named filename contains any set of console commands.

As a real example, the following script is part of the Bacula regression tests. It labels a volume (a disk
volume), runs a backup, then does a restore of the files saved.

bin/bconsole −c bin/bconsole.conf <<END_OF_DATA
@output /dev/null
messages
@output /tmp/log1.out
label volume=TestVolume001
run job=Client1 yes
wait
messages
@#
@# now do a restore
@#
@output /tmp/log2.out
restore current all
yes
wait
messages
@output
quit
END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output from the restore is directed to
/tmp/log2.out. To ensure that the backup and restore ran correctly, the output files are checked with:

grep "^Termination: *Backup OK" /tmp/log1.out
backupstat=$?
grep "^Termination: *Restore OK" /tmp/log2.out
restorestat=$?

Adding Volumes to a Pool

If you have used the label command to label a Volume, it will be automatically added to the Pool, and

Bacula Storage Management System

Adding Volumes to a Pool 170

you will not need to add any media to the pool.

Alternatively, you may choose to add a number of Volumes to the pool without labeling them. At a later
time when the Volume is requested by Bacula you will need to label it.

Before adding a volume, you must know the following information:

The name of the Pool (normally "Default")1.
The Media Type as specified in the Storage Resource in the Director's configuration file (e.g.
"DLT8000")

2.

The number and names of the Volumes you wish to create.3.
For example, to add media to a Pool, you would issue the following commands to the console program:

*add
Enter name of Pool to add Volumes to: Default
Enter the Media Type: DLT8000
Enter number of Media volumes to create. Max=1000: 10
Enter base volume name: Save
Enter the starting number: 1
10 Volumes created in pool Default
*

To see what you have added, enter:

*list media pool=Default
+−−−−−−−+−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−+
| MedId | VolumeNa | MediaTyp| VolStat | Bytes | LastWritten |
+−−−−−−−+−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−+
11	Save0001	DLT8000	Append	0	0000−00−00 00:00
12	Save0002	DLT8000	Append	0	0000−00−00 00:00
13	Save0003	DLT8000	Append	0	0000−00−00 00:00
14	Save0004	DLT8000	Append	0	0000−00−00 00:00
15	Save0005	DLT8000	Append	0	0000−00−00 00:00
16	Save0006	DLT8000	Append	0	0000−00−00 00:00
17	Save0007	DLT8000	Append	0	0000−00−00 00:00
18	Save0008	DLT8000	Append	0	0000−00−00 00:00
19	Save0009	DLT8000	Append	0	0000−00−00 00:00
20	Save0010	DLT8000	Append	0	0000−00−00 00:00
+−−−−−−−+−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−+
*

Notice that the console program automatically appended a number to the base Volume name that you
specify (Save in this case). If you don't want it to append a number, you can simply answer 0 (zero) to
the question "Enter number of Media volumes to create. Max=1000:", and in this case, it will create a
single Volume with the exact name you specify.

Configuring Bacula Index Critical Items Before Going Production

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Adding Volumes to a Pool 171

http://www.bacula.org/

Bacula 1.36 User's Guide

The Console Program Index Restoring Files

Bacula Storage Management System

Adding Volumes to a Pool 172

Critical Items to Implement Before Going Production

General

We recommend you take your time before implementing a Bacula backup system since Bacula is a rather
complex program, and if you make a mistake, you may suddenly find that you cannot restore the your files in
case of a disaster. This is especially true if you have not previously used a major backup product.

If you follow the instructions in this chapter, you will have covered most of the major problems that can occur. It
goes without saying that if ever you find that we have left out an important point, please point it out to us, so that
we can document it to the benefit of everyone.

Critical Items

The following assumes that you have installed Bacula, you more or less understand it, you have at least worked
through the tutorial or have equivalent experience, and that you have setup a basic production configuration. If
you haven't done the above, please do so then come back here. The following is a sort of checklist that points you
elsewhere in the manual with perhaps a brief explaination of why you should do it. The order is more or less the
order you would use in setting up a production system (if you already are in production, use the checklist
anyway).

Test your tape drive with compatibility with Bacula by using the test command in the btape program.•
Better than doing the above is to walk through the nine steps in the Tape Testing chapter of the manual. It
may take you a bit of time, but it will eliminate surprises.

•

Make sure that /lib/tls is disabled. Bacula does not work with this library. See the second point under
Supported Operating Systems.

•

Do at least one restore of files. If you backup both Unix and Win32 systems, restore files from each
system type. The Restoring Files chapter shows you how.

•

Write a bootstrap file to a separate system for each backup job. The Write Bootstrap directive is
described in the Director Configuration chapter of the manual, and more details are available in the
Bootstrap File chapter. Also, the default bacula−dir.conf comes with a Write Bootstrap directive defined.
This allows you to recover the state of your system as of the last backup.

•

Backup your catalog. An example of this is found in the default bacula−dir.conf file. The backup script is
installed by default and should handle any database, though you may want to make your own local
modifications.

•

Write a bootstrap file for the catalog. An example of this is found in the default bacula−dir.conf file. This
will allow you to quickly restore your catalog in the event it is wiped out −− otherwise it is many
excruciating hours of work.

•

Make a Bacula Rescue CDROM! See the Disaster Recovery Using a Bacula Rescue CDROM chapter. It
is trivial to make such a CDROM, and it can make system recovery in the event of a lost hard disk
infinitely easier.

•

Recommended Items

Although these items may not be critical, they are recommended and will help you avoid problems.

Read the Quick Start Guide to Bacula•
After installing and experimenting with Bacula, read and work carefully through the examples in the
Tutorial chapter of this manual.

•

Critical Items to Implement Before Going Production 173

Learn what each of the Bacula Utility Programs does.•
Set up reasonable retention periods so that your catalog does not grow to be too big. See the following
three chapters: Recycling your Volumes, Basic Volume Management, Using Pools to Manage Volumes.

•

Perform a bare metal recovery using the Bacula Rescue CDROM. See the Disaster Recovery Using a
Bacula Rescue CDROM chapter.

•

The Console Program Index Restoring Files

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Critical Items Before Going Production Index Maintaining Your Catalog

Bacula Storage Management System

Critical Items to Implement Before Going Production 174

http://www.bacula.org/

The Bacula Console Restore Command

General

Below, we will discuss restoring files with the Console Restore command, which is the recommended way of
doing it. However, there is a standalone program named bextract, which also permits restoring files. For more
information on this program, please see the Bacula Utility Programs chapter of this manual. You will also want to
look at the bls program in the same chapter, which allows you to list the contents of your Volumes. Finally, if
you have an old Volume that is no longer in the catalog, you can restore the catalog entries using the program
named bscan, documented in the same Bacula Utility Programs chapter.

In general, to restore a file or a set of files, you must run a restore job. That is a job with Type = Restore. As a
consequence, you will need a predefined restore job in your bacula−dir.conf (Director's config) file. The exact
parameters (Client, FileSet, ...) that you define are not important as you can either modify them manually before
running the job or if you use the restore command, explained below, they will be automatically set for you.

Since Bacula is a network backup program, you must be aware that when you restore files, it is up to you to
ensure that you or Bacula have selected the correct Client and the correct hard disk location for restoring those
files. Bacula will quite willingly backup client A, and restore it by sending the files to a different directory on
client B. Normally, you will want to avoid this, but assuming the operating systems are not too different in their
file structures, this should work perfectly well, if so desired.

The Restore Command

Since Bacula maintains a catalog of your files and on which Volumes (disk or tape), they are stored, it can do
most of the bookkeeping work, allowing you simply to specify what kind of restore you want (current, before a
particular date), and what files to restore. Bacula will then do the rest.

This is accomplished using the restore command in the Console. First you select the kind of restore you want,
then Bacula Once the JobIds are selected, the File records for those Jobs are placed in an internal Bacula
directory tree, and the restore enters a file selection mode that allows you to interactively walk up and down the
file tree selecting individual files to be restored. This mode is somewhat similar to the standard Unix restore
program's interactive file selection mode.

Within the Console program, after entering the restore command, you are presented with the following selection
prompt:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Select backup for a client before a specified time
 7: Enter a list of files to restore
 8: Enter a list of files to restore before a specified time
 9: Cancel

The Bacula Console Restore Command 175

Select item: (1−9):

Item 1 will list the last 20 jobs run. If you find the Job you want, you can then select item 3 and enter its
JobId(s).

•

Item 2 will list all the Jobs where a specified file is saved. If you find the Job you want, you can then
select item 3 and enter the JobId.

•

Item 3 allows you the enter a list of comma separated JobIds whose files will be put into the directory
tree.

•

Item 4 allows you to enter any arbitrary SQL command. This is probably the most primitive way of
finding the desired JobIds, but at the same time, the most flexible. Once you have found the JobId(s), you
can select item 3 and enter them.

•

Item 5 will automatically select the most recent Full backup and all subsequent incremental and
differential backups for a specified Client. These are the Jobs and Files which if reloaded will restore
your system to the most current saved state. It automatically enters the JobIds found into the directory
tree. This is probably the most convenient of all the above options to use if you wish to restore a selected
Client to its most recent state.

•

Item 6 allows you to specify a date and time then Bacula will automatically select the most recent Full
backup and all subsequent incremental and differential backups that started before the specified date and
time.

•

Item 7 allows you to specify one or more filenames (complete path required) to be restored. Each
filename is entered one at a time or if you prefix a filename with the less−than symbol (<) Bacula will
read that file and assume it is a list of filenames to be restored. The filename entry mode is terminated by
entering a blank line.

•

Item 8 allows you to specify a date and time before entering the filenames. See Item 7 above for more
details.

•

Item 9 allows you to cancel the restore command.•

As an example, suppose that we select item 5 (restore to most recent state). It will then ask for the desired Client,
which on my system, will print all the Clients found in the database as follows:

Defined clients:
 1: Rufus
 2: Matou
 3: Polymatou
 4: Minimatou
 5: Minou
 6: MatouVerify
 7: PmatouVerify
 8: RufusVerify
 9: Watchdog
Select Client (File daemon) resource (1−9):

You will probably have fare fewer Clients than this example, and if you have only one Client, it will be
automatically selected, but in this case, I enter Rufus to select the Client. Then Bacula needs to know what
FileSet is to be restored, so it prompts with:

The defined FileSet resources are:
 1: Full Set
 2: Kerns Files
Select FileSet resource (1−2):

Bacula Storage Management System

The Bacula Console Restore Command 176

I choose item 1, which is my full backup. Normally, you will only have a single FileSet for each Job, and if your
machines are similar (all Linux) you may only have one FileSet for all your Clients.

At this point, Bacula has all the information it needs to find the most recent set of backups. It will then query the
database, which may take a bit of time, and it will come up with something like the following. Note, some of the
columns are truncated here for presentation:

+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+
| JobId | Levl | JobFiles | StartTime | VolumeName | File | SesId | VolSesTime |
+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+
1,792	F	128,374	08−03 01:58	DLT−19Jul02	67	18	1028042998
1,792	F	128,374	08−03 01:58	DLT−04Aug02	0	18	1028042998
1,797	I	254	08−04 13:53	DLT−04Aug02	5	23	1028042998
1,798	I	15	08−05 01:05	DLT−04Aug02	6	24	1028042998
+−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+
You have selected the following JobId: 1792,1792,1797
Building directory tree for JobId 1792 ...
Building directory tree for JobId 1797 ...
Building directory tree for JobId 1798 ...

cwd is: /
$

Depending on the number of JobFiles for each JobId, the Building directory tree ..." can take a bit of time.

In our example, Bacula found four Jobs that comprise the most recent backup of the specified Client and FileSet.
Two of the Jobs have the same JobId because that Job wrote on two different Volumes. The third Job was an
incremental backup to the previous Full backup, and it only saved 254 Files compared to 128,374 for the Full
backup. The fourth Job was also an incremental backup that saved 15 files.

Next Bacula entered those Jobs into the directory tree, with no files marked to be restored as a default, tells you
how many files are in the tree, and tells you what the current working directory (cwd) is /. Finally, Bacula
prompts with the dollar sign ($) to indicate that you may enter commands to move around the directory tree and
to select files.

Instead of choosing item 5 on the first menu (Select the most recent backup for a client), if we had chosen item 3
(Enter list of JobIds to select) and we had entered the JobIds 1792,1797,1798 we would have arrived at the same
point.

One point to note if you are manually entering JobIds is that you must enter them in the order they were run
(generally in increasing JobId order). If you enter them out of order and the same file was saved in two or more
of the Jobs, you may end up with an old version of that file (i.e. not the most recent).

While in file selection mode, you can enter help or a question mark (?) to produce a summary of the available
commands:

 Command Description
 ======= ===========
 cd change current directory
 count count marked files in and below the cd
 dir list current directory
 done leave file selection mode
 estimate estimate restore size
 exit exit = done
 find find files −− wildcards allowed

Bacula Storage Management System

The Bacula Console Restore Command 177

 help print help
 ls list current directory −− wildcards allowed
 lsmark list the marked files in and below the cd
 mark mark file to be restored
 markdir mark directory entry to be restored −− nonrecursive
 pwd print current working directory
 unmark unmark file to be restored
 unmarkdir unmark directory −− no recursion
 quit quit
 ? print help

As a default no files have been selected for restore. If you want to restore everything, at this point, you should
enter mark *, and then done and Bacula will write the bootstrap records to a file and request your approval to
start a restore job.

If you do not enter the above mentioned mark * command, you will start with an empty slate. Now you can
simply start looking at the tree and mark particular files or directories if you want restored. It is easy to make a
mistake in specifying a file to mark or unmark, and Bacula's error handling is not perfect, so please check your
work by using the ls or dir commands to see what files are actually selected. Any selected file has its name
preceded by an asterisk.

To check what is marked or not marked, enter the count command, which displays:

128401 total files. 128401 marked to be restored.

Each of the above commands will be described in more detail in the next section. We continue with the above
example, having accepted to restore all files as Bacula set by default. On entering the done command, Bacula
prints:

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

 DLT−19Jul02
 DLT−04Aug02

128401 files selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Kerns Files
Client: Rufus
Storage: SDT−10000
JobId: *None*
OK to run? (yes/mod/no):

Please examine each of the items very carefully to make sure that they are correct. In particular, look at Where,
which tells you where in the directory structure the files will be restored, and Client, which tells you which client
will receive the files. These items will not always be completed with the correct values depending on which of
the restore options you chose.

Bacula Storage Management System

The Bacula Console Restore Command 178

The above assumes that you have defined a Restore Job resource in your Director's configuration file. Normally,
you will only need one Restore Job resource definition because by its nature, restoring is a manual operation, and
using the Console interface, you will be able to modify the Restore Job to do what you want.

An example Restore Job resource definition is given below.

Returning to the above example, you should verify that the Client name is correct before running the Job.
However, you may want to modify some of the parameters of the restore job. For example, in addition to
checking the Client it is wise to check that the Storage device chosen by Bacula is indeed correct. Although the
FileSet is shown, it will be ignored in restore. The restore will choose the files to be restored either by reading
the Bootstrap file, or if not specified, it will restore all files associated with the specified backup JobId (i.e. the
JobId of the Job that originally backed up the files).

Finally before running the job, please note that the default location for restoring files is not their original
locations, rather the directory /tmp/bacula−restores. You can change this default by modifying your
bacula−dir.conf file, or you can modify it using the mod option. If you want to restore the files to their original
location, you must have Where set to nothing or to the root, i.e. /.

If you now enter yes, Bacula will run the restore Job. The Storage daemon will first request Volume
DLT−19Jul02 and after the appropriate files have been restored from that volume, it will request Volume
DLT−04Aug02.

Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames, you can either put the list of
filenames in a file to be read by Bacula, or you can enter the names one at a time. The filenames must include the
full path and filename. No wild cards are used.

To enter the files, after the restore, you select item number 7 from the prompt list:

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Select backup for a client before a specified time
 7: Enter a list of files to restore
 8: Enter a list of files to restore before a specified time
 9: Cancel
Select item: (1−9): 7

which then prompts you with for the client name:

Defined Clients:
 1: Timmy
 2: Tibs
 3: Rufus
Select the Client (1−3): 3

Of course, your client list will be different, and if you have only one client, it will be automatically selected. And
finally, Bacula requests you to enter a filename:

Bacula Storage Management System

Selecting Files by Filename 179

Enter filename:

At this point, you can enter the full path and filename

Enter filename: /home/kern/bacula/k/Makefile.in
Enter filename:

as you can see, it took the filename. If Bacula cannot find a copy of the file, it prints the following:

Enter filename: junk filename
No database record found for: junk filename
Enter filename:

If you want Bacula to read the filenames from a file, you simply precede the filename with a less−than symbol
(<). When you have entered all the filenames, you enter a blank line, and Bacula will write the bootstrap file, tell
you what tapes will be used, and propose a Restore job to be run:

Enter filename:
Automatically selected Storage: DDS−4
Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

 test1

1 file selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
Replace: always
FileSet: Kerns Files
Client: Rufus
Storage: DDS−4
When: 2003−09−11 10:20:53
Priority: 10
OK to run? (yes/mod/no):

It is possible to automate the selection by file by putting your list of files in say /tmp/file−list, then using the
following command:

restore client=Rufus file=</tmp/file−list

If in modifying the parameters for the Run Restore job, you find that Bacula asks you to enter a Job number, this
is because you have no yet specified either a Job number or a Bootstrap file. Simply entering zero will allow you
to continue and to select another option to be modified.

Command Line Arguments

If all the above sounds complicated, you will probably agree that it really isn't after trying it a few times. It is
possible to do everything that was shown above, with the exception of selecting the FileSet, by using command
line arguments with a single command by entering:

Bacula Storage Management System

Command Line Arguments 180

restore client=Rufus select current all done yes

The client=Rufus specification will automatically select Rufus as the client, the current tells Bacula that you
want to restore the system to the most current state possible, and the yes suppresses the final yes/mod/no prompt
and simply runs the restore.

The full list of possible command line arguments are:

all −− select all Files to be restored.•
select −− use the tree selection method.•
done −− do not prompt the user in tree mode.•
current −− automatically select the most current set of backups for the specified client.•
client=xxxx −− select the specified client.•
jobid=nnn −− specify a JobId or comma separated list of JobIds to be restored.•
before=YYYY−MM−DD HH:MM:SS −− specify a date and time to which the system should be
restored. Only Jobs started before the specified date/time will be selected, and as is the case for current
Bacula will automatically find the most recent prior Full save and all Differential and Incremental saves
run before the date you specify. Note, this command is not too user friendly in that you must specify the
date/time exactly as shown.

•

file=filename −− specify a filename to be restored. You must specify the full path and filename.
Prefixing the entry with a less−than sign (<) will cause Bacula to assume that the filename is on your
system and contains a list of files to be restored. Bacula will thus read the list from that file. Multiple
file=xxx specifications may be specified on the command line.

•

jobid=nnn −− specify a JobId to be restored.•
pool=pool−name −− specify a Pool name to be used for selection of Volumes when specifying options 5
and 6 (restore current system, and restore current system before given date). This permits you to have
several Pools, possibly one offsite, and to select the Pool to be used for restoring.

•

yes −− automatically run the restore without prompting for modifications (most useful in batch scripts).•

Restoring on Windows

If you are restoring on WinNT/2K/XP systems, Bacula will restore the files with the original ownerships and
permissions as would be expected. This is also true if you are restoring those files to an alternate directory (using
the Where option in restore). However, if the alternate directory does not already exist, the Bacula File daemon
(Client) will create it, and since the File daemon runs under the SYSTEM account, the directory will be created
with SYSTEM ownership and permissions. In this case, you may have problems accessing the newly restored
files.

To avoid this problem, you can create the alternate directory before doing the restore. Bacula will not change the
ownership and permissions of the directory if it is already created as long as it is not one of the directories being
restored (i.e. written to tape).

Restoring Files Can Be Slow

Restoring files is generally much slower than backing it up for several reasons. The first is that during a backup
the tape is normally already positioned and Bacula need only write. On the other hand, because restoring files is
done so rarely, Bacula keeps only the he start file and block on the tape for the whole job rather than on a file by
file basis which would use quite a lot of space in the catalog.

Bacula Storage Management System

Restoring on Windows 181

Bacula versions 1.31a and older would seek to the first file on the first tape, then sequentially search the tape for
the specified files. If you were doing a full restore, this is OK, but if you want to restore one or two files, the
process could be quite long.

This deficiency has been corrected in version 1.32. The consequence is that Bacula will forward space to the
correct file mark on the tape for the Job, then forward space to the correct block, and finally sequentially read
each record until it gets to the correct one(s) for the file or files you want to restore. Once the desired files are
restored, Bacula will stop reading the tape. For restoring a small number of files, version 1.32 and greater are
hundreds of times faster than previous versions.

Finally, instead of just reading a file for backup, during the restore, Bacula must create the file, and the operating
system must allocate disk space for the file as Bacula is restoring it.

For all the above reasons the restore process is generally much slower than backing up.

Example Restore Job Resource

Job {
 Name = "RestoreFiles"
 Type = Restore
 Client = Any−client
 FileSet = "Any−FileSet"
 Storage = Any−storage
 Where = /tmp/bacula−restores
 Messages = Standard
 Pool = Default
}

If Where is not specified, the default location for restoring files will be their original locations.

File Selection Commands

After you have selected the Jobs to be restored and Bacula has created the in−memory directory tree, you will
enter file selection mode as indicated by the dollar sign ($) prompt. While in this mode, you may use the
commands listed above. The basic idea is to move up and down the in memory directory structure with the cd
command much as you normally do on the system. Once you are in a directory, you may select the files that you
want restored. As a default no files are marked to be restored. If you wish to start with all files, simply enter: cd /
and mark *. Otherwise proceed to select the files you wish to restore by marking them with the mark command.
The available commands are:

cd
The cd command changes the current directory to the argument specified. It operates much like the Unix
cd command. Wildcard specifications are not permitted.
Note, on Windows systems, the various drives (c:, d:, ...) are treated like a directory within the file tree
while in the file selection mode. As a consequence, you must do a cd c: or possibly in some cases a cd
C: (note upper case) to get down to the first directory.

dir
The dir command is similar to the ls command, except that it prints it in long format (all details). This
command can be a bit slower than the ls command because it must access the catalog database for the
detailed information for each file.

Bacula Storage Management System

Example Restore Job Resource 182

estimate
The estimate command prints a summary of the total files in the tree, how many are marked to be
restored, and an estimate of the number of bytes to be restored. This can be useful if you are short on disk
space on the machine where the files will be restored.

find
The find command accepts one or more arguments and displays all files in the tree that match that
argument. The argument may have wildcards. It is somewhat similar to the Unix command find / −name
arg.

ls
The ls command produces a listing of all the files contained in the current directory much like the Unix ls
command. You may specify an argument containing wildcards, in which case only those files will be
listed. Any file that is marked to be restored will have its name preceded by an asterisk (*). Directory
names will be terminated with a forward slash (/) to distinguish them from filenames.

lsmark
The lsmark command is the same as the ls except that it will print only those files marked for extraction.
The other distinction is that it will recursively descend into any directory selected.

mark
The mark command allows you to mark files to be restored. It takes a single argument which is the
filename or directory name in the current directory to be marked for extraction. The argument may be a
wildcard specification, in which case all files that match in the current directory are marked to be
restored. If the argument matches a directory rather than a file, then the directory and all files contained
in that directory (recursively) are marked to be restored. Any marked file will have its name preceded
with an asterisk (*) in the output produced by the ls or dir commands. Note, supplying a full path on the
mark command does not work as expected to select a file or directory in the current directory. Also, the
mark command works on the current and lower directories but does not touch higher level directories.
After executing the mark command, it will print a brief summary:

 No files marked.

If no files were marked, or:

 nn files marked.

if some files are marked.
unmark

The unmark is identical to the mark command, except that it unmarks the specified file or files so that
they will not be restored. Note: the unmark command works from the current directory, so it does not
unmark any files at a higher level. First do a cd / before the unmark * command if you want to unmark
everything.

pwd
The pwd command prints the current working directory. It accepts no arguments.

count
The count command prints the total files in the directory tree and the number of files marked to be
restored.

done
This command terminates file selection mode.

exit
This command terminates file selection mode (the same as done).

quit
This command terminates the file selection and does not run the restore job.

Bacula Storage Management System

Example Restore Job Resource 183

help
This command prints a summary of the commands available.

?
This command is the same as the help command.

Critical Items Before Going Production Index Maintaining Your Catalog

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Restoring Files Index Automatic Volume Recycling

Bacula Storage Management System

Example Restore Job Resource 184

http://www.bacula.org/

Catalog Maintenance
Without proper setup and maintenance, your Catalog may continue to grow indefinitely as you run Jobs and
backup Files. How fast the size of your Catalog grows depends on the number of Jobs you run and how many
files they backup. By deleting records within the database, you can make space available for the new records that
will be added during the next Job. By constantly deleting old expired records (dates older than the Retention
period), your database size will remain constant.

If you started with the default configuration files, they already contain reasonable defaults for a small number of
machines (less that 5), so if you fall into that case, catalog maintenance will not be urgent if you have a few
hundred megabytes of disk space free. Whatever the case may be, some knowledge of retention periods will be
useful.

Setting Retention Periods

Bacula uses three Retention periods: the File Retention period, the Job Retention period, and the Volume
Retention period. Of these three, the File Retention period is by far the most important in determining how large
your database will become.

The File Retention and the Job Retention are specified in each Client resource as is shown below. The Volume
Retention period is specified in the Pool resource, and the details are given in the next chapter of this manual.

File Retention = <time−period−specification>
The File Retention record defines the length of time that Bacula will keep File records in the Catalog
database. When this time period expires, and if AutoPrune is set to yes, Bacula will prune (remove) File
records that are older than the specified File Retention period. The pruning will occur at the end of a
backup Job for the given Client. Note that the Client database record contains a copy of the File and Job
retention periods, but Bacula uses the current values found in the Director's Client resource to do the
pruning.
Retention periods are specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years on the
record. See the Configuration chapter of this manual for additional details of modifier specification.

The default is 60 days.

Job Retention = <time−period−specification>
The Job Retention record defines the length of time that Bacula will keep Job records in the Catalog
database. When this time period expires, and if AutoPrune is set to yes Bacula will prune (remove) Job
records that are older than the specified File Retention period. Note, if a Job record is selected for
pruning, all associated File and JobMedia records will also be pruned regardless of the File Retention
period set. As a consequence, you normally will set the File retention period to be less than the Job
retention period.
The retention period is specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years. See the
Configuration chapter of this manual for additional details of modifier specification.

The default is 180 days.

AutoPrune = <yes/no>

Catalog Maintenance 185

If AutoPrune is set to yes (default), Bacula will automatically apply the File retention period and the Job
retention period for the Client at the end of the Job.
If you turn this off by setting it to no, your Catalog will grow each time you run a Job.

Compacting Your MySQL Database

Over time, as noted above, your database will tend to grow. I've noticed that even though Bacula regularly prunes
files, MySQL does not effectively use the space, and instead continues growing. To avoid this, from time to
time, you must compact your database. Normally, large commercial database such as Oracle have commands that
will compact a database to reclaim wasted file space. MySQL has the OPTIMIZE TABLE command that you
can use, and SQLite version 2.8.4 and greater has the VACUUM command. We leave it to you to explore the
utility of the OPTIMIZE TABLE command in MySQL.

All database programs have some means of writing the database out in ASCII format and then reloading it. Doing
so will re−create the database from scratch producing a compacted result, so below, we show you how you can
do this for both MySQL and SQLite.

For a MySQL database, you could write the Bacula database as an ASCII file (bacula.sql) then reload it by doing
the following:

mysqldump −f −−opt bacula > bacula.sql
mysql bacula < bacula.sql
rm −f bacula.sql

Depending on the size of your database, this will take more or less time and a fair amount of disk space. For
example, if I cd to the location of the MySQL Bacula database (typically /opt/mysql/var or something similar)
and enter:

du bacula

I get 620,644 which means there are that many blocks containing 1024 bytes each or approximately 635 MB of
data. After doing the msqldump, I had a bacula.sql file that had 174,356 blocks, and after doing the mysql
command to recreate the database, I ended up with a total of 210,464 blocks rather than the original 629,644. In
other words, the compressed version of the database took approximately one third of the space of the database
that had been in use for about a year.

As a consequence, I suggest you monitor the size of your database and from time to time (once every 6 months or
year), compress it.

Repairing Your MySQL Database

If you find that you are getting errors writing to your MySQL database, or Bacula hangs each time it tries to
access the database, you should consider running MySQL's database check and repair routines. The program you
need to run depends on the type of database indexing you are using. If you are using the default, you will
probably want to use myisamchk. For more details on how to do this, please consult the MySQL document at:
http://www.mysql.com/doc/en/Repair.html.

If the errors you are getting are simply SQL warnings, then you might try running dbcheck before (or possibly
after) using the MySQL database repair program. It can clean up many of the orphanned record problems, and

Bacula Storage Management System

Compacting Your MySQL Database 186

http://www.mysql.com/doc/en/Repair.html

certain other inconsistencies in the Bacula database.

Repairing Your PostgreSQL Database

The same considerations apply that are indicated above for MySQL. That is, consult the PostgreSQL documents
for how to repair the database, and also consider using Bacula's dbcheck program if the conditions are reasonable
for using (see above).

Compacting Your PostgreSQL Database

Over time, as noted above, your database will tend to grow. I've noticed that even though Bacula regularly prunes
files, PostgreSQL has a VACUUM command that will compact your database for you. Alternatively you may
want to use the vacuumdb command, which can be run from a cron job.

All database programs have some means of writing the database out in ASCII format and then reloading it. Doing
so will re−create the database from scratch producing a compacted result, so below, we show you how you can
do this for PostgreSQL.

For a PostgreSQL database, you could write the Bacula database as an ASCII file (bacula.sql) then reload it by
doing the following:

pg_dump bacula > bacula.sql
cat bacula.sql | psql bacula
rm −f bacula.sql

Depending on the size of your database, this will take more or less time and a fair amount of disk space. For
example, you can cd to the location of the Bacula database (typically /usr/local/pgsql/data or possible
/var/lib/pgsql/data) and check the size.

Compacting Your SQLite Database

First please read the previous section that explains why it is necessary to compress a database. SQLite version
2.8.4 and greater have the Vacuum command for compacting the database.

cd working−directory
echo 'vacuum' | sqlite bacula.db

As an alternative, you can use the following commands, adapted to your system:

cd working−directory
echo '.dump' | sqlite bacula.db > bacula.sql
rm −f bacula.db
sqlite bacula.db < bacula.sql
rm −f bacula.sql

Where working−directory is the directory that you specified in the Director's configuration file. Note, in the
case of SQLite, it is necessary to completely delete (rm) the old database before creating a new compressed
version.

Bacula Storage Management System

Repairing Your PostgreSQL Database 187

Migrating from SQLite to MySQL

You may begin using Bacula with SQLite then later find that you want to switch to MySQL for any of a number
of reasons: SQLite tends to use more disk than MySQL, SQLite apparently does not handle database sizes greater
than 2GBytes, ... Several users have done so by first producing an ASCII "dump" of the SQLite database, then
creating the MySQL tables with the create_mysql_tables script that comes with Bacula, and finally feeding the
SQLite dump into MySQL using the −f command line option to continue past the errors that are generated by the
DDL statements that SQLite's dump creates. Of course, you could edit the dump and remove the offending
statements. Otherwise, MySQL accepts the SQL produced by SQLite.

Backing Up Your Bacula Database

If ever the machine on which you Bacula database crashes, and you need to restore from backup tapes, one of
your first priorities will probably be to recover the database. Although Bacula will happily backup your catalog
database if it is specified in the FileSet, this is not a very good way to do it because the database will be saved
while Bacula is modifying it. Thus the database may be in and instable state. Worse yet, you will backup the
database before all the Bacula updates have been applied.

To resolve these problems, you need backup the database after all the backup jobs have been run. In addition, you
will want to make a copy while Bacula is not modifying it. To do so, you can use two scripts provided in the
release make_catalog_backup and delete_catalog_backup. These files will be automatically generated along
with all the other Bacula scripts. The first script will make an ASCII copy of your Bacula database into
bacula.sql in the working directory you specified on your configuration, and the second will delete the
bacula.sql file.

The basic sequence of events to make this work correctly is as follows:

Run all your nightly backups•
After running your nightly backups, run a Catalog backup Job•
The Catalog backup job must be scheduled after your last nightly backup•
You use RunBeforeJob to create the ASCII backup file and RunAfterJob to clean up•

Assuming that you start all your nightly backup jobs at 1:05 am (and that they run one after another), you can do
the catalog backup with the following additional Director configuration statements:

Backup the catalog database (after the nightly save)
Job {
 Name = "BackupCatalog"
 Type = Backup
 Client=rufus−fd
 FileSet="Catalog"
 Schedule = "WeeklyCycleAfterBackup"
 Storage = DLTDrive
 Messages = Standard
 Pool = Default
 RunBeforeJob = "/home/kern/bacula/bin/make_catalog_backup"
 RunAfterJob = "/home/kern/bacula/bin/delete_catalog_backup"
}

This schedule does the catalog. It starts after the WeeklyCycle
Schedule {
 Name = "WeeklyCycleAfterBackup
 Run = Full sun−sat at 1:10

Bacula Storage Management System

Migrating from SQLite to MySQL 188

}

This is the backup of the catalog
FileSet {
 Name = "Catalog"
 Include = signature=MD5 {
 @working_directory@/bacula.sql
 }
}

Backing Up Third Party Databases

If you are running a database in production mode on your machine, Bacula will happily backup the files, but if
the database is in use while Bacula is reading it, you may back it up in an unstable state.

The best solution is to shutdown your database before backing it up, or use some tool specific to your database to
make a valid live copy perhaps by dumping the database in ASCII format. I am not a database expert, so I cannot
provide you advice on how to do this, but if you are unsure about how to backup your database, you might try
visiting the Backup Central site, which has been renamed Storage Mountain (www.backupcentral.com). In
particular, their Free Backup and Recovery Software page has links to scripts that show you how to shutdown
and backup most major databases.

Database Size

As mentioned above, if you do not do automatic pruning, your Catalog will grow each time you run a Job.
Normally, you should decide how long you want File records to be maintained in the Catalog and set the File
Retention period to that time. Then you can either wait and see how big your Catalog gets or make a calculation
assuming approximately 154 bytes for each File saved and knowing the number of Files that are saved during
each backup and the number of Clients you backup.

For example, suppose you do a backup of two systems, each with 100,000 files. Suppose further that you do a
Full backup weekly and an Incremental every day, and that the Incremental backup typically saves 4,000 files.
The size of your database after a month can roughly be calculated as:

 Size = 154 * No. Systems * (100,000 * 4 + 10,000 * 26)

where we have assumed 4 weeks in a month and 26 incremental backups per month. This would give the
following:

 Size = 154 * 2 * (100,000 * 4 + 10,000 * 26)
or
 Size = 308 * (400,000 + 260,000)
or
 Size = 203,280,000 bytes

So for the above two systems, we should expect to have a database size of approximately 200 Megabytes. Of
course, this will vary according to how many files are actually backed up.

Below are some statistics for a MySQL database containing Job records for five Clients beginning September
2001 through May 2002 (8.5 months) and File records for the last 80 days. (Older File records have been
pruned). For these systems, only the user files and system files that change are backed up. The core part of the

Bacula Storage Management System

Backing Up Third Party Databases 189

http://www.backupcentral.com/toc-free-backup-software.html

system is assumed to be easily reloaded from the RedHat rpms.

In the list below, the files (corresponding to Bacula Tables) with the extension .MYD contain the data records
whereas files with the extension .MYI contain indexes.

You will note that the File records (containing the file attributes) make up the large bulk of the number of records
as well as the space used (459 Mega Bytes including the indexes). As a consequence, the most important
Retention period will be the File Retention period. A quick calculation shows that for each File that is saved, the
database grows by approximately 150 bytes.

 Size in
 Bytes Records File
 ============ ========= ===========
 168 5 Client.MYD
 3,072 Client.MYI
 344,394,684 3,080,191 File.MYD
 115,280,896 File.MYI
 2,590,316 106,902 Filename.MYD
 3,026,944 Filename.MYI
 184 4 FileSet.MYD
 2,048 FileSet.MYI
 49,062 1,326 JobMedia.MYD
 30,720 JobMedia.MYI
 141,752 1,378 Job.MYD
 13,312 Job.MYI
 1,004 11 Media.MYD
 3,072 Media.MYI
 1,299,512 22,233 Path.MYD
 581,632 Path.MYI
 36 1 Pool.MYD
 3,072 Pool.MYI
 5 1 Version.MYD
 1,024 Version.MYI

This database has a total size of approximately 450 Megabytes.

If we were using SQLite, the determination of the total database size would be much easier since it is a single
file, but we would have less insight to the size of the individual tables as we have in this case.

Note, SQLite databases may be as much as 50% larger than MySQL databases due to the fact that all data is
stored as ASCII strings. That is even binary integers are stored as ASCII strings, and this seems to increase the
space needed.

Restoring Files Index Automatic Volume Recycling

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Backing Up Third Party Databases 190

http://www.bacula.org/

Bacula 1.36 User's Guide

Catalog Maintenance Index Backing Up to Disk Volumes

Bacula Storage Management System

Backing Up Third Party Databases 191

Automatic Volume Recycling
Normally, Bacula will write on a volume, and once the tape is written, it can append to the volume, but it will
never overwrite the data thus destroying it. When we speak of recycling volumes, we mean that Bacula can write
over the previous contents of a volume. Thus all previous data will be lost.

If you are like me, you may not want Bacula to automatically recycle (reuse) tapes. This requires a large number
of tapes, and when I need a tape, I manually recycle it. For more on manual recycling, see the section entitled
Manually Recycling Volumes below in this chapter.

Most people prefer to have a Pool of tapes that are used for daily backups and recycled once a week, another Pool
of tapes that are used for Full backups once a week and recycled monthly, and finally a Pool of tapes that are
used once a month and recycled after a year or two. With a scheme like this, your pool of tapes remains constant.

By properly defining your Volume Pools with appropriate Retention periods, Bacula can manage the recycling
(such as defined above) automatically.

Automatic recycling of Volumes is controlled by three records in the Pool resource definition in the Director's
configuration file. These three records are:

AutoPrune = yes•
VolumeRetention = <time>•
Recycle = yes•

Automatic recycling of Volumes is performed by Bacula only when it wants a new Volume and no appendable
Volumes are available in the Pool. It will then search the Pool for any Volumes with the Recycle flag set and
whose Volume Status is Full. At that point, the recycling occurs in two steps. The first is that a Volume must be
purged of all Jobs and Files, and the second step is the actual recycling of the Volume. The Volume will be
purged if the VolumeRetention period has expired. If no volumes can be recycled for any of the reasons stated
above, Bacula will request operator intervention (i.e. it will ask you to label a new volume).

A key point mentioned above that can be a source of frustration is that Bacula will only recycle purged Volumes
if there is no other appendable Volume available. So, if you wish to "force" Bacula to use a purged Volume, you
must first ensure that no other Volume in the Pool is marked Append. If necessary, you can manually set a
volume to Full. The reason for this is that Bacula wants to preserve the data on your old tapes (even though
purged from the catalog) as long as absolutely possible before overwriting it.

Automatic Pruning

As Bacula writes files to tape, it keeps a list of files, jobs, and volumes in a database called the catalog. Among
other things, the database helps Bacula to decide which files to back up in an incremental or differential backup,
and helps you locate files on past backups when you want to restore something. However, the catalog will grow
larger and larger as time goes on, and eventually it can become unacceptably large.

Bacula's process for removing entries from the catalog is called Pruning. The default is Automatic Pruning,
which means that once an entry reaches a certain age (e.g. 30 days old) it is removed from the catalog. Once a job
has been pruned, you can still restore it from the backup tape, but one additional step is required: scanning the
volume with bscan. The alternative to Automatic Pruning is Manual Pruning, in which you explicitly tell Bacula
to erase the catalog entries for a volume. You'd usually do this when you want to reuse a Bacula volume, because
there's no point in keeping a list of files that USED TO BE on a tape. Or, if the catalog is starting to get too big,

Automatic Volume Recycling 192

you could prune the oldest jobs to save space. Manual pruning is done with the prune command in the console.
(thanks to Bryce Denney for the above explanation).

Prunning Directives

There are three pruning durations. All apply to catalog database records and not to the actual data in a Volume.
The pruning (or retention) durations are for: Volumes (Media records), Jobs (Job records), and Files (File
records). The durations inter−depend a bit because if Bacula prunes a Volume, it automatically removes all the
Job records, and all the File records. Also when a Job record is pruned, all the File records for that Job are also
pruned (deleted) from the catalog.

Having the File records in the database means that you can examine all the files backed up for a particular Job.
They take the most space in the catalog (probably 90−95% of the total). When the File records are pruned, the
Job records can remain, and you can still examine what Jobs ran, but not the details of the Files backed up. In
addition, without the File records, you cannot use the Console restore command to restore the files.

When a Job record is pruned, the Volume (Media record) for that Job can still remain in the database, and if you
do a "list volumes", you will see the volume information, but the Job records (and its File records) will no longer
be available.

In each case, pruning removes information about where older files are, but it also prevents the catalog from
growing to be too large. You choose the retention periods in function of how many files you are backing up and
the time periods you want to keep those records online, and the size of the database.You can always re−insert the
records (with 98% of the original data) by using "bscan" to scan in a whole Volume or any part of the volume
that you want.

By setting AutoPrune to yes you will permit Bacula to automatically prune all Volumes in the Pool when a Job
needs another Volume. Volume pruning means removing records from the catalog. It does not shrink the size of
the Volume or effect the Volume data until the Volume gets overwritten. When a Job requests another volume
and there are no Volumes with Volume Status Append available, Bacula will begin volume pruning. This means
that all Jobs that are older than the VolumeRetention period will be pruned from every Volume that has Volume
Status Full or Used and has Recycle set to yes. Pruning consists of deleting the corresponding Job, File, and
JobMedia records from the catalog database. No change to the physical data on the Volume occurs during the
pruning process. When all files are pruned from a Volume (i.e. no records in the catalog), the Volume will be
marked as Purged implying that no Jobs remain on the volume. The Pool records that control the pruning are
described below.

AutoPrune = <yes/no>
If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will automatically apply the Volume
retention period when running a Job and it needs a new Volume but no appendable volumes are
available. At that point, Bacula will prune all Volumes that can be pruned (i.e. AutoPrune set) in an
attempt to find a usable volume. If during the autoprune, all files are pruned from the Volume, it will be
marked with VolStatus Purged. The default is yes.

Volume Retention = <time−period−specification>
The Volume Retention record defines the length of time that Bacula will guarantee that the Volume is not
reused counting from the time the last job stored on the Volume terminated.
When this time period expires, and if AutoPrune is set to yes, and a new Volume is needed, but no
appendable Volume is available, Bacula will prune (remove) Job records that are older than the specified
Volume Retention period.

Bacula Storage Management System

Prunning Directives 193

The Volume Retention period takes precedence over any Job Retention period you have specified in the
Client resource. It should also be noted, that the Volume Retention period is obtained by reading the
Catalog Database Media record rather than the Pool resource record. This means that if you change the
VolumeRetention in the Pool resource record, you must ensure that the corresponding change is made in
the catalog by using the update pool command. Doing so will insure that any new Volumes will be
created with the changed Volume Retention period. Any existing Volumes will have their own copy of
the Volume Retention period that can only be changed on a Volume by Volume basis using the update
volume command.

When all file catalog entries are removed from the volume, its VolStatus is set to Purged. The files
remain physically on the Volume until the volume is overwritten.

Retention periods are specified in seconds, minutes, hours, days, weeks, months, quarters, or years on the
record. See the Configuration chapter of this manual for additional details of time specification.

The default is 1 year.

Recycle = <yes/no>
This statement tells Bacula whether or not the particular Volume can be recycled (i.e. rewritten). If
Recycle is set to no (the default), then even if Bacula prunes all the Jobs on the volume and it is marked
Purged, it will not consider the tape for recycling. If Recycle is set to yes and all Jobs have been pruned,
the volume status will be set to Purged and the volume may then be reused when another volume is
needed. If the volume is reused, it is relabeled with the same Volume Name, however all previous data
will be lost.

Note, it is also possible to "force" pruning of all Volumes in the Pool associated with a Job by adding Prune
Files = yes to the Job resource.

Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this happens when a Job needs a new
Volume and no appendable Volumes are available), Bacula will look for the oldest Volume that is Purged (all
Jobs and Files expired), and if the Recycle flag is on (Recycle=yes) for that Volume, Bacula will relabel it and
write new data on it.

The full recycling algorithm that Bacula uses when it needs a new Volume is:

Search the Pool for a Volume with VolStatus=Append (if there is more than one, the Volume with the
oldest date last written is chosen. If two have the same date then the one with the lowest MediaId is
chosen).

•

Search the Pool for a Volume with VolStatus=Recycle (if there is more than one, the Volume with the
oldest date last written is chosen. If two have the same date then the one with the lowest MediaId is
chosen).

•

Prune volumes applying Volume retention period (Volumes with VolStatus Full, Used, or Append are
pruned).

•

Search the Pool for a Volume with VolStatus=Purged•
Attempt to create a new Volume if automatic labeling enabled•
Prune the oldest Volume if RecycleOldestVolume=yes (the Volume with the oldest LastWritten date and
VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). This record ensures that all
retention periods are properly respected.

•

Bacula Storage Management System

Recycling Algorithm 194

Purge the oldest Volume if PurgeOldestVolume=yes (the Volume with the oldest LastWritten date and
VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). We strongly recommend against
the use of PurgeOldestVolume as it can quite easily lead to loss of current backup data.

•

Give up and ask operator.•

The above occurs when Bacula has finished writing a Volume or when no Volume is present in the drive.

On the other hand, if you have inserted a different Volume after the last job, and Bacula recognizes the Volume
as valid, it will request authorization from the Director to use this Volume. In this case, if you have set Recycle
Current Volume = yes and the Volume is marked as Used or Full, Bacula will prune the volume and if all jobs
were removed during the pruning (respecting the retention periods), the Volume will be recycled and used. For
this to work, you must have Accept Any Volume = yes in the Pool. The recycling algorithm in this case is:

If the VolStatus is Append or Recycle and Accept Any Volume is set, the volume will be used.•
If Recycle Current Volume is set and the volume is marked Full or Used, Bacula will prune the volume
(applying the retention period). If all Jobs are pruned from the volume, it will be recycled.

•

This permits users to manually change the Volume every day and load tapes in an order different from what is in
the catalog, and if the volume does not contain a current copy of your backup data, it will be used.

Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource record when the Media record is
created (normally when the Volume is labeled). This Recycle status is stored in the Media record of the Catalog.
Using the the Console program, you may subsequently change the Recycle status for each Volume. For example
in the following output from list volumes:

+−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−+
| VolumeNa | Media | VolSta | VolByte | LastWritte | VolRet | Rec |
+−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−+
File0001	File	Full	4190055	2002−05−25	14400	1
File0002	File	Full	1896460	2002−05−26	14400	1
File0003	File	Full	1896460	2002−05−26	14400	1
File0004	File	Full	1896460	2002−05−26	14400	1
File0005	File	Full	1896460	2002−05−26	14400	1
File0006	File	Full	1896460	2002−05−26	14400	1
File0007	File	Purged	1896466	2002−05−26	14400	1
+−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−+

all the volumes are marked as recyclable, and the last Volume, File0007 has been purged, so it may be
immediately recycled. The other volumes are all marked recyclable and when their Volume Retention period
(14400 seconds or 4 hours) expires, they will be eligible for pruning, and possible recycling. Even though
Volume File0007 has been purged, all the data on the Volume is still recoverable. A purged Volume simply
means that there are no entries in the Catalog. Even if the Volume Status is changed to Recycle, the data on the
Volume will be recoverable. The data is lost only when the Volume is re−labeled and re−written.

To modify Volume File0001 so that it cannot be recycled, you use the update volume pool=File command in
the console program, or simply update and Bacula will prompt you for the information.

+−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−+
| VolumeNa | Media| VolSta| VolByte | LastWritten | VolRet| Rec |
+−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−+
| File0001 | File | Full | 4190055 | 2002−05−25 | 14400 | 0 |

Bacula Storage Management System

Recycle Status 195

File0002	File	Full	1897236	2002−05−26	14400	1
File0003	File	Full	1896460	2002−05−26	14400	1
File0004	File	Full	1896460	2002−05−26	14400	1
File0005	File	Full	1896460	2002−05−26	14400	1
File0006	File	Full	1896460	2002−05−26	14400	1
File0007	File	Purged	1896466	2002−05−26	14400	1
+−−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−+

In this case, File0001 will never be automatically recycled. The same effect can be achieved by setting the
Volume Status to Read−Only.

Making Bacula Use a Single Tape

Most people will want Bacula to fill a tape and when it is full, a new tape will be mounted, and so on. However,
as an extreme example, it is possible for Bacula to write on a single tape, and every night to rewrite it. To get this
to work, you must do two things: first, set the VolumeRetention to less than your save period (one day), and the
second item is to make Bacula mark the tape as full after using it once. This is done using UseVolumeOnce =
yes. If this latter record is not used and the tape is not full after the first time it is written, Bacula will simply
append to the tape and eventually request another volume. Using the tape only once, forces the tape to be marked
Full after each use, and the next time Bacula runs, it will recycle the tape.

An example Pool resource that does this is:

Pool {
 Name = DDS−4
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 12h # expire after 12 hours
 Recycle = yes
}

A Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of volumes that Bacula will rotate through
on a regular schedule. There are an infinite number of such schemes, all of which have various advantages and
disadvantages.

We start with the following assumptions:

A single tape has more than enough capacity to do a full save.•
There are 10 tapes that are used on a daily basis for incremental backups. They are prelabeled Daily1 ...
Daily10.

•

There are 4 tapes that are used on a weekly basis for full backups. They are labeled Week1 ... Week4.•
There are 12 tapes that are used on a monthly basis for full backups. They are numbered Month1 ...
Month12

•

A full backup is done every Saturday evening (tape inserted Friday evening before leaving work).•
No backups are done over the weekend (this is easy to change).•
The first Friday of each month, a Monthly tape is used for the Full backup.•
Incremental backups are done Monday − Friday (actually Tue−Fri mornings).•

We start the system by doing a Full save to one of the weekly volumes or one of the monthly volumes. The next

Bacula Storage Management System

Making Bacula Use a Single Tape 196

morning, we remove the tape and insert a Daily tape. Friday evening, we remove the Daily tape and insert the
next tape in the Weekly series. Monday, we remove the Weekly tape and re−insert the Daily tape. On the first
Friday of the next month, we insert the next Monthly tape in the series rather than a Weekly tape, then continue.
When a Daily tape finally fills up, Bacula will request the next one in the series, and the next day when you
notice the email message, you will mount it and Bacula will finish the unfinished incremental backup.

What does this give? Well, at any point, you will have a the last complete Full save plus several Incremental
saves. For any given file your want to recover (or your whole system), you will have a copy of that file every day
for at least the last 14 days. For older versions, you will have at least 3 and probably 4 Friday full saves of that
file, and going back further, you will have a copy of that file made on the beginning of the month for at least a
year.

So you have copies of any file (or your whole system) for at least a year, but as you go back in time, the time
between copies increases from daily to weekly to monthly.

What would the Bacula configuration look like to implement such a scheme?

Schedule {
 Name = "NightlySave"
 Run = Level=Full Pool=Monthly 1st sat at 03:05
 Run = Level=Full Pool=Weekly 2nd−5th sat at 03:05
 Run = Level=Incremental Pool=Daily tue−fri at 03:05
}

Job {
 Name = "NightlySave"
 Type = Backup
 Level = Full
 Client = LocalMachine
 FileSet = "File Set"
 Messages = Standard
 Storage = DDS−4
 Pool = Daily
 Schedule = "NightlySave"
}

Definition of file storage device
Storage {
 Name = DDS−4
 Address = localhost
 SDPort = 9103
 Password = XXXXXXXXXXXXX
 Device = FileStorage
 Media Type = 8mm
}

FileSet {
 Name = "File Set"
 Include = signature=MD5 {
 fffffffffffffffff
 }
 Exclude = { *.o }
}

Pool {
 Name = Daily
 Pool Type = Backup
 AutoPrune = yes

Bacula Storage Management System

Making Bacula Use a Single Tape 197

 VolumeRetention = 10d # recycle in 10 days
 Maximum Volumes = 10
 Recycle = yes
}

Pool {
 Name = Weekly
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 30d # recycle in 30 days (default)
 Recycle = yes
}

Pool {
 Name = Monthly
 Use Volume Once = yes
 Pool Type = Backup
 AutoPrune = yes
 VolumeRetention = 365d # recycle in 1 year
 Recycle = yes
}

Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come into play during automatic pruning
and recycling is to run a Job that goes through the whole cycle. If you add the following resources to your
Director's configuration file:

Schedule {
 Name = "30 minute cycle"
 Run = Level=Full Pool=File Messages=Standard Storage=File
 hourly at 0:05
 Run = Level=Full Pool=File Messages=Standard Storage=File
 hourly at 0:35
}

Job {
 Name = "Filetest"
 Type = Backup
 Level = Full
 Client=XXXXXXXXXX
 FileSet="Test Files"
 Messages = Standard
 Storage = File
 Pool = File
 Schedule = "30 minute cycle"
}

Definition of file storage device
Storage {
 Name = File
 Address = XXXXXXXXXXX
 SDPort = 9103
 Password = XXXXXXXXXXXXX
 Device = FileStorage
 Media Type = File
}

Bacula Storage Management System

 Automatic Pruning and Recycling Example 198

FileSet {
 Name = "Test Files"
 Include = signature=MD5 {
 fffffffffffffffff
 }
 Exclude = { *.o }
}

Pool {
 Name = File
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = "File"
 AutoPrune = yes
 VolumeRetention = 4h
 Maximum Volumes = 12
 Recycle = yes
}

Where you will need to replace the ffffffffff's by the appropriate files to be saved for your configuration. For the
FileSet Include, choose a directory that has one or two megabytes maximum since there will probably be
approximately 8 copies of the directory that Bacula will cycle through.

In addition, you will need to add the following to your Storage daemon's configuration file:

Device {
 Name = FileStorage
 Media Type = File
 Archive Device = /tmp
 LabelMedia = yes;
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

With the above resources, Bacula will start a Job every half hour that saves a copy of the directory you chose to
/tmp/File0001 ... /tmp/File0012. After 4 hours, Bacula will start recycling the backup Volumes (/tmp/File0001
...). You should see this happening in the output produced. Bacula will automatically create the Volumes (Files)
the first time it uses them.

To turn it off, either delete all the resources you've added, or simply comment out the Schedule record in the Job
resource.

Manually Recycling Volumes

Although automatic recycling of Volumes is implemented in version 1.20 and later (see the Automatic Recycling
of Volumes chapter of this manual), you may want to manually force reuse (recycling) of a Volume.

Assuming that you want to keep the Volume name, but you simply want to write new data on the tape, the steps
to take are:

Use the update volume command in the Console to ensure that the Recycle field is set to 1•
Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by using
list volumes.

•

Bacula Storage Management System

Manually Recycling Volumes 199

Once the Volume is marked Purged, it will be recycled the next time a Volume is needed.

If you wish to reuse the tape by giving it a new name, follow the following steps:

Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by using
b>list volumes.

•

In Bacula version 1.30 or greater, use the Console relabel command to relabel the Volume.•

Please note that the relabel command applies only to tape Volumes.

For Bacula versions prior to 1.30 or to manually relabel the Volume, use the instructions below:

Use the delete volume command in the Console to delete the Volume from the Catalog.•
If the a different tape is mounted, use the unmount command, remove the tape, and insert the tape to be
renamed.

•

Write an EOF mark in the tape using the following commands:•

 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

where you replace /dev/nst0 with the appropriate device name on your system.
Use the label command to write a new label to the tape and to enter it in the catalog.•

Please be aware that the delete command can be dangerous. Once it is done, to recover the File records, you must
either restore your database as it was before the delete command, or use the bscan utility program to scan the
tape and recreate the database entries.

Catalog Maintenance Index Backing Up to Disk Volumes

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Recycling Your Volumes Index Using Pools to Manage Volumes

Bacula Storage Management System

Manually Recycling Volumes 200

http://www.bacula.org/

Basic Volume Management
This chapter presents most all the features needed to do Volume management. Most of the concepts apply equally
well to both tape and disk Volumes. However, the chapter was originally written to explain backing up to disk, so
you will see it is slanted in that direction, but that all the directives presented here apply equally well whether
your volume is disk or tape.

If you have a lot of hard disk storage or you absolutely must have your backups run within a small time window,
you may want to direct Bacula to backup to disk Volumes rather than tape Volumes. This chapter is intended to
give you some of the options that are available to you so that you can manage either disk or tape volumes.

Key Concepts and Resource Records

Getting Bacula to write to disk rather than tape in the simplest case is rather easy. In the Storage daemon's
configuration file, you simply define an Archive Device to be a directory. For example, if you want your disk
backups to go into the directory /home/bacula/backups, you could use the following:

Device {
 Name = FileBackup
 Media Type = File
 Archive Device = /home/bacula/backups
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Assuming you have the appropriate Storage resource in your Director's configuration file that references the
above Device resource,

Storage {
 Name = FileStorage
 Address = ...
 Password = ...
 Device = FileBackup
 Media Type = File
}

Bacula will then write the archive to the file /home/bacula/backups/<volume−name> where <volume−name> is
the volume name of a Volume defined in the Pool. For example, if you have labeled a Volume named Vol001,
Bacula will write to the file /home/bacula/backups/Vol001. Although you can later move the archive file to
another directory, you should not rename it or it will become unreadable by Bacula. This is because each archive
has the filename as part of the internal label, and the internal label must agree with the system filename before
Bacula will use it.

Although this is quite simple, there are a number of problems, the first is that unless you specify otherwise,
Bacula will always write to the same volume until you run out of disk space.

Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record, are:

Basic Volume Management 201

To write each Volume only once (i.e. one Job per Volume or file in this case), use:•

UseVolumeOnce = yes.

To write nnn Jobs to each Volume, use:•

Maximum Volume Jobs = nnn.

To limit the maximum size of each Volume, use:•

Maximum Volume Bytes = mmmm.

To limit the use time (i.e. write the Volume for a maximum of 5 days), use:•

Volume Use Duration = ttt.

Note that although you probably would not want to limit the number of bytes on a tape as you would on a disk
Volume, the other options can be very useful in limiting the time Bacula will use a particular Volume (be it tape
or disk). For example, the above directives can allow you to ensure that you rotate through a set of daily Volumes
if you wish.

As mentioned above, each of those directives are specified in the Pool or Pools that you use for your Volumes. In
the case of Maximum Job Volumes, Maximum Volume Bytes, and Volume Use Duration, you can actually
specify the desired value on a Volume by Volume basis. The value specified in the Pool record becomes the
default when labeling new Volumes. As an example of the use of one of the above, suppose your Pool resource
contains:

Pool {
 Name = File
 Pool Type = Backup
 Volume Use Duration = 23h
}

then if you run a backup once a day (every 24 hours), Bacula will use a new Volume each backup because each
Volume it writes can only be used for 23 hours after the first write.

Automatic Volume Labeling

Use of the above records brings up another problem −− that of labeling your Volumes. For automated disk
backup, you can either manually label each of your Volumes, or you can have Bacula automatically label new
Volumes when they are needed. While, the automatic Volume labeling in version 1.30 and prior is a bit
simplistic, but it does allow for automation, the features added in version 1.31 permit automatic creation of a
wide variety of labels including information from environment variables and special Bacula Counter variables.

Please note that automatic Volume can also be used with tapes, but it is not nearly so practical since the tapes
must be pre−mounted. This requires some user interaction. Automatic labeling from templates does NOT work
with autochangers since Bacula will not access unknown slots. There are several methods of labeling all volumes
in an autochanger magazine. For more information on this, please see the Autochanger chapter of this manual.

Automatic Volume labeling is enabled by making a change to both the Pool resource (Director) and to the Device
resource (Storage daemon) shown above. In the case of the Pool resource, you must provide Bacula with a label

Bacula Storage Management System

Automatic Volume Labeling 202

format that it will use to create new names. In the simplest form, the label format is simply the Volume name, to
which Bacula will append a four digit number. This number starts at 0001 and is incremented for each Volume
the pool contains. Thus if you modify your Pool resource to be:

Pool {
 Name = File
 Pool Type = Backup
 Volume Use Duration = 23h
 LabelFormat = "Vol"
}

Bacula will create Volume names Vol0001, Vol0002, and so on when new Volumes are needed. Much more
complex and elaborate labels can be created using variable expansion defined in the Variable Expansion chapter
of this manual.

The second change that is necessary to make automatic labeling work is to give the Storage daemon permission
to automatically label Volumes. Do so by adding LabelMedia = yes to the Device resource as follows:

Device {
 Name = File
 Media Type = File
 Archive Device = /home/bacula/backups
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
 LabelMedia = yes
}

You can find more details of the Label Format Pool record in Label Format description of the Pool resource
records.

Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume management. With the above scheme, a
new Volume will be created every day. If you have not specified Retention periods, your Catalog will continue to
fill keeping track of all the files Bacula has backed up, and this procedure will create one new archive file
(Volume) every day.

The tools Bacula gives you to help automatically manage these problems are the following:

Catalog file record retention periods, the File Retention = ttt record in the Client resource.1.
Catalog job record retention periods, the Job Retention = ttt record in the Client resource.2.
The AutoPrune = yes record in the Client resource to permit application of the above two retention
periods.

3.

The Volume Retention = ttt record in the Pool resource.4.
The AutoPrune = yes record in the Pool resource to permit application of the Volume retention period.5.
The Recycle = yes record in the Pool resource to permit automatic recycling of Volumes whose Volume
retention period has expired.

6.

The Recycle Oldest Volume = yes record in the Pool resource tells Bacula to Prune the oldest volume in
the Pool, and if all files were pruned to recyle this volume and use it.

7.

The Recycle Current Volume = yes record in the Pool resource tells Bacula to Prune the currently
mounted volume in the Pool, and if all files were pruned to recyle this volume and use it.

8.

Bacula Storage Management System

Restricting the Number of Volumes and Recycling 203

The Purge Oldest Volume = yes record in the Pool resource permits a forced recycling of the oldest
Volume when a new one is needed. N.B. This record ignores retention periods! We highly
recommend not to use this record, but instead use Recycle Oldest Volume

9.

The Maximum Volumes = nnn record in the Pool resource to limit the number of Volumes that can be
created.

10.

The first three records (File Retention, Job Retention, and AutoPrune) determine the amount of time that Job and
File records will remain in your Catalog, and they are discussed in detail in the Automatic Volume Recycling
chapter of this manual.

Volume Retention, AutoPrune, and Recycle determine how long Bacula will keep your Volumes before reusing
them, and they are also discussed in detail in the Automatic Volume Recycling chapter of this manual.

The Maximum Volumes record can also be used in conjunction with the Volume Retention period to limit the
total number of archive Volumes (files) that Bacula will create. By setting an appropriate Volume Retention
period, a Volume will be purged just before it is needed and thus Bacula can cycle through a fixed set of
Volumes. Cycling through a fixed set of Volumes can also be done by setting Recycle Oldest Volume = yes or
Recycle Current Volume = yes. In this case, when Bacula needs a new Volume, it will prune the specified
volume.

An Example

The following example is not very practical, but can be used to demonstrate the proof of concept in a relatively
short period of time. The example consists of a single client that is backed up to a set of 12 archive files
(Volumes). Each Volume is used (written) only once, and there are four Full saves done every hour (so the whole
thing cycles around after three hours).

The Director's configuration file is as follows:

Director {
 Name = my−dir
 QueryFile = "~/bacula/bin/query.sql"
 PidDirectory = "~/bacula/working"
 WorkingDirectory = "~/bacula/working"
 Password = dir_password
}

Schedule {
 Name = "FourPerHour"
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:05
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:20
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:35
 Run = Level=Full Pool=Recycle Storage=File hourly at 0:50
}

Job {
 Name = "RecycleExample"
 Type = Backup
 Level = Full
 Client = Rufus
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = FileStorage
 Pool = Recycle
 Schedule = FourPerHour

Bacula Storage Management System

An Example 204

}

FileSet {
 Name = "Example FileSet"
 Include = compression=GZIP signature=SHA1 {
 /home/kern/bacula/bin
 }
}

Client {
 Name = Rufus
 Address = rufus
 Catalog = BackupDB
 Password = client_password
}

Storage {
 Name = FileStorage
 Address = rufus
 Password = local_storage_password
 Device = RecycleDir
 Media Type = File
}

Catalog {
 Name = BackupDB
 dbname = bacula; user = bacula; password = ""
}

Messages {
 Name = Standard
 ...
}

Pool {
 Name = Recycle
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = "Vol"
 AutoPrune = yes
 VolumeRetention = 2h
 Maximum Volumes = 12
 Recycle = yes
}

and the Storage daemon's configuration file is:

Storage {
 Name = my−sd
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
 MaximumConcurrentJobs = 10
}

Director {
 Name = my−dir
 Password = local_storage_password
}

Bacula Storage Management System

An Example 205

Device {
 Name = RecycleDir
 Media Type = File
 Archive Device = /home/bacula/backups
 LabelMedia = yes;
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Messages {
 Name = Standard
 director = my−dir = all
}

In this example, the Jobs will be backed up to directory /home/bacula/backups with Volume names Vol0001,
Vol0002, ... Vol0012. Every backup Job will write a new volume cycling through the volume numbers, and two
hours after a job has started, the volume will be pruned Volume Retention = 2h.

With a little bit of work, you can change the above example into a weekly or monthly cycle (take care about the
amount of archive disk space used).

Backing up to Multiple Disks

Bacula can, of course, use multiple disks, but in general, each disk must be a separate Device specification in the
Storage daemon's conf file, and you must then select what clients to backup to each disk.

The situation is a bit more complicated if you want to treat two disk drives logically as a single drive, which
Bacula does not directly support. However, it is possible to back up your data to multiple disks as if they were a
single drive by linking the Volumes from the first disk to the second disk.

For example, assume that you have two disks named /disk1 and /disk2>. If you then create a standard Storage
daemon Device resource for backing up to the first disk, it will look like the following:

Device {
 Name = client1
 Media Type = File
 Archive Device = /disk1
 LabelMedia = yes;
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Since there is no way to get the above Device resource to reference both /disk1 and /disk2 we do it by
pre−creating Volumes on /disk2 with the following:

ln −s /disk2/Disk2−vol001 /disk1/Disk2−vol001
ln −s /disk2/Disk2−vol002 /disk1/Disk2−vol002
ln −s /disk2/Disk2−vol003 /disk1/Disk2−vol003
...

Bacula Storage Management System

Backing up to Multiple Disks 206

At this point, you can label the Volumes as Volume Disk2−vol001, Disk2−vol002, ... and Bacula will use them
as if they were on /disk1 but actually write the data to /disk2. The only minor inconvenience with this method is
that you must explicitly name the disks and cannot use automatic labeling unless you arrange to have the labels
exactly match the links you have created.

Considerations for Multiple Clients

If we take the above example and add a second Client, here are a few considerations:

Although the second client can write to the same set of Volumes, you will probably want to write to a
different set.

•

You can write to a different set of Volumes by defining a second Pool, which has a different name and a
different LabelFormat.

•

If you wish the Volumes for the second client to go into a different directory (perhaps even on a different
filesystem to spread the load), you would do so by defining a second Device resource in the Storage
daemon. The Name must be different, and the Archive Device could be different. To ensure that
Volumes are never mixed from one pool to another, you might also define a different MediaType (e.g.
File1).

•

In this example, we have two clients, each with a different Pool and a different number of archive files retained.
They also write to different directories with different Volume labeling.

The Director's configuration file is as follows:

Director {
 Name = my−dir
 QueryFile = "~/bacula/bin/query.sql"
 PidDirectory = "~/bacula/working"
 WorkingDirectory = "~/bacula/working"
 Password = dir_password
}

Basic weekly schedule
Schedule {
 Name = "WeeklySchedule"
 Run = Level=Full fri at 1:30
 Run = Level=Incremental sat−thu at 1:30
}

FileSet {
 Name = "Example FileSet"
 Include = compression=GZIP signature=SHA1 {
 /home/kern/bacula/bin
 }
}

Job {
 Name = "Backup−client1"
 Type = Backup
 Level = Full
 Client = client1
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = File1
 Pool = client1
 Schedule = "WeeklySchedule"

Bacula Storage Management System

Considerations for Multiple Clients 207

}

Job {
 Name = "Backup−client2"
 Type = Backup
 Level = Full
 Client = client2
 FileSet= "Example FileSet"
 Messages = Standard
 Storage = File2
 Pool = client2
 Schedule = "WeeklySchedule"
}

Client {
 Name = client1
 Address = client1
 Catalog = BackupDB
 Password = client1_password
 File Retention = 7d
}

Client {
 Name = client2
 Address = client2
 Catalog = BackupDB
 Password = client2_password
}

Two Storage definitions permits different directories
Storage {
 Name = File1
 Address = rufus
 Password = local_storage_password
 Device = client1
 Media Type = File
}

Storage {
 Name = File2
 Address = rufus
 Password = local_storage_password
 Device = client2
 Media Type = File
}

Catalog {
 Name = BackupDB
 dbname = bacula; user = bacula; password = ""
}

Messages {
 Name = Standard
 ...
}

Two pools permits different cycling periods and Volume names
Cycle through 15 Volumes (two weeks)
Pool {
 Name = client1
 Use Volume Once = yes

Bacula Storage Management System

Considerations for Multiple Clients 208

 Pool Type = Backup
 LabelFormat = "Client1−"
 AutoPrune = yes
 VolumeRetention = 13d
 Maximum Volumes = 15
 Recycle = yes
}

Cycle through 8 Volumes (1 week)
Pool {
 Name = client2
 Use Volume Once = yes
 Pool Type = Backup
 LabelFormat = "Client2−"
 AutoPrune = yes
 VolumeRetention = 6d
 Maximum Volumes = 8
 Recycle = yes
}

and the Storage daemon's configuration file is:

Storage {
 Name = my−sd
 WorkingDirectory = "~/bacula/working"
 Pid Directory = "~/bacula/working"
 MaximumConcurrentJobs = 10
}

Director {
 Name = my−dir
 Password = local_storage_password
}

Archive directory for Client1
Device {
 Name = client1
 Media Type = File
 Archive Device = /home/bacula/client1
 LabelMedia = yes;
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Archive directory for Client2
Device {
 Name = client2
 Media Type = File
 Archive Device = /home/bacula/client2
 LabelMedia = yes;
 Random Access = Yes;
 AutomaticMount = yes;
 RemovableMedia = no;
 AlwaysOpen = no;
}

Messages {

Bacula Storage Management System

Considerations for Multiple Clients 209

 Name = Standard
 director = my−dir = all
}

Recycling Your Volumes Index Using Pools to Manage Volumes

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Basic Volume Management Index Backup Strategies

Bacula Storage Management System

Considerations for Multiple Clients 210

http://www.bacula.org/

Using Pools to Manage Volumes
If you manage 5 or 10 machines and have a nice tape backup, you don't need Pools, and you may wonder what
they are good for. In this chapter, you will see that Pools can help you optimize disk storage space. The same
techniques can be applied to a shop that has multiple tape drives, or that wants to mount various different
Volumes to meet their needs.

The rest of this chapter will give an example involving backup to disk Volumes, but most of the information
applies equally well for tape Volumes.

The Problem

A site that I administer (a charitable organization) had a tape DDS−3 tape drive that was failing. The exact reason
for the failure is still unknown. Worse yet, their full backup size is about 15GB whereas the capacity of their
broken DDS−3 was at best 8GB (rated 6/12). A new DDS−4 tape drive and the necessary cassettes was more
expensive than their budget could handle.

The Solution

They want to maintain 6 months of backup data, and be able to access the old files on a daily basis for a week, a
weekly basis for a month, then monthly for 6 months. In addition, and offsite capability was not needed (well
perhaps it really is, but it was never used). Their daily changes amount to about 300MB on the average, or about
2GB per week.

As a consequence, the total volume of data they need to keep to meet their needs is about 100GB (15GB x 6 +
2GB x 5 + 0.3 x 7) = 102.1GB.

The chosen solution was to buy a 120GB hard disk for next to nothing −− far less than 1/10th the price of a tape
drive and the cassettes to handle the same amount of data, and to have Bacula write to disk files.

The rest of this chapter will explain how to setup Bacula so that it would automatically manage a set of disk files
with the minimum intervention on my part. The system has been running since 22 January 2004 until today (08
April 2004) with no intervention. Since we have not yet crossed the six month boundary, we still lack some data
to be sure the system performs as desired.

Overall Design

Getting Bacula to write to disk rather than tape in the simplest case is rather easy, and is documented in the
previous chapter. In addition, all the directives discussed here are explained in that chapter. We'll leave it to you
to look at the details there. If you haven't read it and are not familiar with Pools, you probably should at least read
it once quickly for the ideas before continuing here.

One needs to consider about what happens if we have only a single large Bacula Volume defined on our hard
disk. Everything works fine until the Volume fills, then Bacula will ask you to mount a new Volume. This same
problem applies to the use of tape Volumes if your tape fills. Being a hard disk and the only one you have, this
will be a bit of a problem. It should be obvious that it is better to use a number of smaller Volumes and arrange
for Bacula to automatically recycle them so that the disk storage space can be reused. The other problem with a
single Volume, is that at the current time (1.34.0) Bacula does not seek within a disk Volume, so restoring a
single file can take more time than one would expect.

Using Pools to Manage Volumes 211

As mentioned, the solution is to have multiple Volumes, or files on the disk. To do so, we need to limit the use
and thus the size of a single Volume, by time, by number of jobs, or by size. Any of these would work, but we
chose to limit the use of a single Volume by putting a single job in each Volume with the exception of Volumes
containing Incremental backup where there will be 6 jobs (a week's worth of data) per volume. The details of this
will be discussed shortly.

The next problem to resolve is recycling of Volumes. As you noted from above, the requirements are to be able
to restore monthly for 6 months, weekly for a month, and daily for a week. So to simplify things, why not do a
Full save once a month, a Differential save once a week, and Incremental saves daily. Now since each of these
different kinds of saves needs to remain valid for differing periods, the simplest way to do this (and possibly the
only) is to have a separate Pool for each backup type.

The decision was to use three Pools: one for Full saves, one for Differential saves, and one for Incremental saves,
and each would have a different number of volumes and a different Retention period to accomplish the
requirements.

Full Pool

Putting a single Full backup on each Volume, will require six Full save Volumes, and a retention period of six
months. The Pool needed to do that is:

Pool {
 Name = Full−Pool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6 months
 Accept Any Volume = yes
 Maximum Volume Jobs = 1
 Label Format = Full−
 Maximum Volumes = 6
}

Since these are disk Volumes, no space is lost by having separate Volumes for each backup (done once a month
in this case). The items to note are the retention period of six months (i.e. they are recycled after 6 months), that
there is one job per volume (Maximum Volume Jobs = 1), the volumes will be labeled Full−0001, ... Full−0006
automatically. One could have labeled these manual from the start, but why not use the features of Bacula.

Differential Pool

For the Differential backup Pool, we choose a retention period of a bit longer than a month and ensure that there
is at least one Volume for each of the maximum of five weeks in a month. So the following works:

Pool {
 Name = Diff−Pool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 40 days
 Accept Any Volume = yes
 Maximum Volume Jobs = 1
 Label Format = Diff−
 Maximum Volumes = 6
}

Bacula Storage Management System

Full Pool 212

As you can see, the Differential Pool can grow to a maximum of six volumes, and the Volumes are retained 40
days and there after can be recycled. Finally there is one job per volume. This, of course, could be tightened up a
lot, but the expense here is a few GB which is not too serious.

Incremental Pool

Finally, here is the resource for the Incremental Pool:

Pool {
 Name = Inc−Pool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 20 days
 Accept Any Volume = yes
 Maximum Volume Jobs = 6
 Label Format = Inc−
 Maximum Volumes = 5
}

We keep the data for 20 days rather than just a week as the needs require. To reduce the proliferation of volume
names, we keep a week's worth of data (6 incremental backups) in each Volume. In practice, the retention period
should be set to just a bit more than a week and keep only two or three volumes instead of five. Again, the lost is
very little and as the system reaches the full steady state, we can adjust these values so that the total disk usage
doesn't exceed the disk capacity.

The Actual Conf Files

The following example shows you the actual files used, with only a few minor modifications to simplify things.

The Director's configuration file is as follows:

Director { # define myself
 Name = bacula−dir
 DIRport = 9101
 QueryFile = "/home/bacula/bin/query.sql"
 WorkingDirectory = "/home/bacula/working"
 PidDirectory = "/home/bacula/working"
 Maximum Concurrent Jobs = 1
 Password = " "
 Messages = Standard
}

By default, this job will back up to disk in /tmp
Job {
 Name = client
 Type = Backup
 Client = client−fd
 FileSet = "Full Set"
 Schedule = "WeeklyCycle"
 Storage = File
 Messages = Standard
 Pool = Default
 Full Backup Pool = Full−Pool
 Incremental Backup Pool = Inc−Pool

Bacula Storage Management System

Incremental Pool 213

 Differential Backup Pool = Diff−Pool
 Write Bootstrap = "/home/bacula/working/client.bsr"
 Priority = 10
}

List of files to be backed up
FileSet {
 Name = "Full Set"
 Include = signature=SHA1 compression=GZIP9 {
 /
 /usr
 /home
 }
 Exclude = {
 /proc /tmp /.journal /.fsck
 }
}

Schedule {
 Name = "WeeklyCycle"
 Run = Full 1st sun at 1:05
 Run = Differential 2nd−5th sun at 1:05
 Run = Incremental mon−sat at 1:05
}

Client {
 Name = client−fd
 Address = client
 FDPort = 9102
 Catalog = MyCatalog
 Password = " "
 AutoPrune = yes # Prune expired Jobs/Files
 Job Retention = 6 months
 File Retention = 60 days
}

Storage {
 Name = File
 Address = localhost
 SDPort = 9103
 Password = " "
 Device = FileStorage
 Media Type = File
}

Catalog {
 Name = MyCatalog
 dbname = bacula; user = bacula; password = ""
}

Pool {
 Name = Full−Pool
 Pool Type = Backup
 Recycle = yes # automatically recycle Volumes
 AutoPrune = yes # Prune expired volumes
 Volume Retention = 6 months
 Accept Any Volume = yes # write on any volume in the pool
 Maximum Volume Jobs = 1
 Label Format = Full−
 Maximum Volumes = 6

Bacula Storage Management System

Incremental Pool 214

}

Pool {
 Name = Inc−Pool
 Pool Type = Backup
 Recycle = yes # automatically recycle Volumes
 AutoPrune = yes # Prune expired volumes
 Volume Retention = 20 days
 Accept Any Volume = yes
 Maximum Volume Jobs = 6
 Label Format = Inc−
 Maximum Volumes = 5
}

Pool {
 Name = Diff−Pool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 40 days
 Accept Any Volume = yes
 Maximum Volume Jobs = 1
 Label Format = Diff−
 Maximum Volumes = 6
}

Messages {
 Name = Standard
 mailcommand = "bsmtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "bsmtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"
 mail = root@domain.com = all, !skipped
 operator = root@domain.com = mount
 console = all, !skipped, !saved
 append = "/home/bacula/bin/log" = all, !skipped
}

and the Storage daemon's configuration file is:

Storage { # definition of myself
 Name = bacula−sd
 SDPort = 9103 # Director's port
 WorkingDirectory = "/home/bacula/working"
 Pid Directory = "/home/bacula/working"
}

Director {
 Name = bacula−dir
 Password = " "
}

Device {
 Name = FileStorage
 Media Type = File
 Archive Device = /files/bacula
 LabelMedia = yes; # lets Bacula label unlabeled media
 Random Access = Yes;

Bacula Storage Management System

Incremental Pool 215

 AutomaticMount = yes; # when device opened, read it
 RemovableMedia = no;
 AlwaysOpen = no;
}

Messages {
 Name = Standard
 director = bacula−dir = all
}

Basic Volume Management Index Backup Strategies

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Using Pools to Backup Disk Volumes Index Using Autochangers

Bacula Storage Management System

Incremental Pool 216

http://www.bacula.org/

Backup Strategies
Although Recycling and Backing Up to Disk Volume have been discussed in previous chapters, this chapter is
meant to give you an overall view of possible backup strategies and to explain their advantages and
disadvantages.

Simple One Tape Backup

Probably the simplest strategy is to back everything up to a single tape and insert a new (or recycled) tape when it
fills and Bacula requests a new one.

Advantages

The operator intervenes only when a tape change is needed. (once a month at my site).•
There is little chance of operator error because the tape is not changed daily.•
A minimum number of tapes will be needed for a full restore. Typically the best case will be one tape and
worst two.

•

You can easily arrange for the Full backup to occur a different night of the month for each system, thus
load balancing and shortening the backup time.

•

Disadvantages

If your site burns down, you will lose your current backups, and in my case about a month of data.•
After a tape fills and you have put in a blank tape, the backup will continue, and this will generally
happen during working hours.

•

Practical Details

This system is very simple. When the tape fills and Bacula requests a new tape, you unmount the tape from the
Console program, insert a new tape and label it. In most cases after the label, Bacula will automatically mount
the tape and resume the backup. Otherwise, you simply mount the tape.

Using this strategy, one typically does a Full backup once a week following by daily Incremental backups. To
minimize the amount of data written to the tape, once can do (as I do) a Full backup once a month on the first
Sunday of the month, a Differential backup on the 2nd−5th Sunday of the month, and incremental backups the
rest of the week.

Manually Changing Tapes

If you use the strategy presented above, Bacula will ask you to change the tape, and you will unmount it and the
remount it when you have inserted the new tape.

If you do not wish to interact with Bacula to change each tape, there are several ways to get Bacula to release the
tape:

In your Storage daemon's Device resource, set
AlwaysOpen = no
In this case, Bacula will release the tape after every job. If you run several jobs, the tape will be rewound
and repositioned to the end at the beginning of every job. This is not very efficient, but does let you

•

Backup Strategies 217

change the tape whenever you want.
Use a RunAfterJob statement to run a script after your last job. This could also be an Admin job that
runs after all your backup jobs. The script could be something like:

•

 #!/bin/sh
 /full−path/console −c /full−path/console.conf <<END_OF_DATA
 release storage=your−storage−name
 END_OF_DATA

In this example, you would have AlwaysOpen=yes, but the release command would tell Bacula to
rewind the tape and on the next job assume the tape has changed. This strategy may not work on some
systems, or on autochangers because Bacula will still keep the drive open.
The final strategy is the similar to the previous case except that you would use the unmount command to
force Bacula to release the drive. Then you would eject the tape, and remount it as follows:

•

 #!/bin/sh
 /full−path/console −c /full−path/console.conf < unmount storage=your−storage−name
 END_OF_DATA
 # the following is a shell command
 mt eject
 /full−path/console −c /full−path/console.conf <<END_OF_DATA
 mount storage=your−storage−name
 END_OF_DATA

Daily Tape Rotation

This scheme is quite different from the one mentioned above in that a Full backup is done to a different tape
every day of the week. Generally, the backup will cycle continuously through 5 or 6 tapes each week. Variations
are to use a different tape each Friday, and possibly at the beginning of the month. Thus if backups are done
Monday through Friday only, you need only 5 tapes, and by having two Friday tapes, you need a total of 6 tapes.
Many sites run this way, or using modifications of it based on two week cycles or longer.

Advantages

All the data is stored on a single tape, so recoveries are simple and faster.•
Assuming the previous day's tape is taken offsite each day, a maximum of one days data will be lost if
the site burns down.

•

Disadvantages

The tape must be changed every day requiring a lot of operator intervention.•
More errors will occur because of human mistakes.•
If the wrong tape is inadvertently mounted, the Backup for that day will not occur exposing the system to
data loss.

•

There is much more movement of the tape each day (rewinds) leading to shorter tape drive life time.•
Initial setup of Bacula to run in this mode is more complicated than the Single tape system described
above.

•

Depending on the number of systems you have and their data capacity, it may not be possible to do a Full
backup every night for time reasons or reasons of tape capacity.

•

Bacula Storage Management System

Daily Tape Rotation 218

Practical Details

The simplest way to "force" Bacula to use a different tape each day is to define a different Pool for each day of
the the week a backup is done. In addition, you will need to specify appropriate Job and File retention periods so
that Bacula will relabel and overwrite the tape each week rather than appending to it. Nic Bellamy has supplied
an actual working model of this which we include here.

What is important is to create a different Pool for each day of the week, and on the run statement in the
Schedule, to specify which Pool is to be used. He has one Schedule that accomplishes this, and a second
Schedule that does the same thing for the Catalog backup run each day after the main backup (Priorities were not
available when this script was written). In addition, he uses a Max Start Delay of 22 hours so that if the wrong
tape is premounted by the operator, the job will be automatically canceled, and the backup cycle will
re−synchronize the next day. He has named his Friday Pool WeeklyPool because in that Pool, he wishes to have
several tapes to be able to restore to a time older than one week.

And finally, in his Storage daemon's Device resource, he has Automatic Mount = yes and Always Open = No.
This is necessary for the tape ejection to work in his end_of_backup.sh script below.

For example, his bacula−dir.conf file looks like the following:

/etc/bacula/bacula−dir.conf
#
Bacula Director Configuration file
#

Director {
 Name = ServerName
 DIRport = 9101
 QueryFile = "/etc/bacula/query.sql"
 WorkingDirectory = "/var/lib/bacula"
 PidDirectory = "/var/run"
 SubSysDirectory = "/var/lock/subsys"
 Maximum Concurrent Jobs = 1
 Password = "console−pass"
 Messages = Standard
}

#
Define the main nightly save backup job
#
Job {
 Name = "NightlySave"
 Type = Backup
 Client = ServerName
 FileSet = "Full Set"
 Schedule = "WeeklyCycle"
 Storage = Tape
 Messages = Standard
 Pool = Default
 Write Bootstrap = "/var/lib/bacula/NightlySave.bsr"
 Max Start Delay = 22h
}

Backup the catalog database (after the nightly save)
Job {
 Name = "BackupCatalog"
 Type = Backup

Bacula Storage Management System

Practical Details 219

 Client = ServerName
 FileSet = "Catalog"
 Schedule = "WeeklyCycleAfterBackup"
 Storage = Tape
 Messages = Standard
 Pool = Default
 # This creates an ASCII copy of the catalog
 RunBeforeJob = "/usr/lib/bacula/make_catalog_backup −u bacula"
 # This deletes the copy of the catalog, and ejects the tape
 RunAfterJob = "/etc/bacula/end_of_backup.sh"
 Write Bootstrap = "/var/lib/bacula/BackupCatalog.bsr"
 Max Start Delay = 22h
}

Standard Restore template, changed by Console program
Job {
 Name = "RestoreFiles"
 Type = Restore
 Client = ServerName
 FileSet = "Full Set"
 Storage = Tape
 Messages = Standard
 Pool = Default
 Where = /tmp/bacula−restores
}

List of files to be backed up
FileSet {
 Name = "Full Set"
 Include = signature=MD5 {
 /
 /data
 }
 Exclude = { /proc /tmp /.journal }
}

#
When to do the backups
#
Schedule {
 Name = "WeeklyCycle"
 Run = Level=Full Pool=MondayPool Monday at 8:00pm
 Run = Level=Full Pool=TuesdayPool Tuesday at 8:00pm
 Run = Level=Full Pool=WednesdayPool Wednesday at 8:00pm
 Run = Level=Full Pool=ThursdayPool Thursday at 8:00pm
 Run = Level=Full Pool=WeeklyPool Friday at 8:00pm
}

This does the catalog. It starts after the WeeklyCycle
Schedule {
 Name = "WeeklyCycleAfterBackup"
 Run = Level=Full Pool=MondayPool Monday at 8:15pm
 Run = Level=Full Pool=TuesdayPool Tuesday at 8:15pm
 Run = Level=Full Pool=WednesdayPool Wednesday at 8:15pm
 Run = Level=Full Pool=ThursdayPool Thursday at 8:15pm
 Run = Level=Full Pool=WeeklyPool Friday at 8:15pm
}

This is the backup of the catalog
FileSet {

Bacula Storage Management System

Practical Details 220

 Name = "Catalog"
 Include = signature=MD5 {
 /var/lib/bacula/bacula.sql
 }
}

Client (File Services) to backup
Client {
 Name = ServerName
 Address = dionysus
 FDPort = 9102
 Catalog = MyCatalog
 Password = "client−pass"
 File Retention = 30d
 Job Retention = 30d
 AutoPrune = yes
}

Definition of file storage device
Storage {
 Name = Tape
 Address = dionysus
 SDPort = 9103
 Password = "storage−pass"
 Device = Tandberg
 Media Type = MLR1
}

Generic catalog service
Catalog {
 Name = MyCatalog
 dbname = bacula; user = bacula; password = ""
}

Reasonable message delivery −− send almost all to email address
and to the console
Messages {
 Name = Standard
 mailcommand = "/usr/sbin/bsmtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/usr/sbin/bsmtp −h localhost −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"
 mail = root@localhost = all, !skipped
 operator = root@localhost = mount
 console = all, !skipped, !saved
 append = "/var/lib/bacula/log" = all, !skipped
}

Pool definitions
#
Default Pool for jobs, but will hold no actual volumes
Pool {
 Name = Default
 Pool Type = Backup
}

Pool {
 Name = MondayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes

Bacula Storage Management System

Practical Details 221

 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = TuesdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = WednesdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = ThursdayPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 6d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

Pool {
 Name = WeeklyPool
 Pool Type = Backup
 Recycle = yes
 AutoPrune = yes
 Volume Retention = 12d
 Accept Any Volume = yes
 Maximum Volume Jobs = 2
}

EOF

Note, the mailcommand and operatorcommand should be on a single line each. They were split to preserve the
proper page width. In order to get Bacula to release the tape after the nightly backup, he uses a RunAfterJob
script that deletes the ASCII copy of the database back and then rewinds and ejects the tape. The following is a
copy of end_of_backup.sh

#! /bin/sh

/usr/lib/bacula/delete_catalog_backup

mt rewind
mt eject

exit 0

Bacula Storage Management System

Practical Details 222

Finally, if you list his Volumes, you get something like the following:

*list media

Using default Catalog name=MyCatalog DB=bacula

Pool: WeeklyPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 5 | Friday_1 | MLR1 | Used | 2157171998| 2003−07−11 20:20| 103680| 1 |

| 6 | Friday_2 | MLR1 | Append | 0 | 0 | 103680| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: MondayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 2 | Monday | MLR1 | Used | 2260942092| 2003−07−14 20:20| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: TuesdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 3 | Tuesday | MLR1 | Used | 2268180300| 2003−07−15 20:20| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: WednesdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 4 | Wednesday | MLR1 | Used | 2138871127| 2003−07−09 20:2 | 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: ThursdayPool

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

| 1 | Thursday | MLR1 | Used | 2146276461| 2003−07−10 20:50| 518400| 1 |

+−−−−−+−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+

Pool: Default

No results to list.

Note, I have truncated a number of the columns so that the information fits on the width of a page.

Using Pools to Backup Disk Volumes Index Using Autochangers

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Practical Details 223

http://www.bacula.org/

Bacula 1.36 User's Guide

Backing Up to Disk Volumes Index Frequently Asked Questions

Bacula Storage Management System

Practical Details 224

Data Spooling
Bacula allows you to specify that you want the Storage daemon to initially write your data to disk and then
subsequently to tape. This serves several important purposes.

It can take a long time for data to come in from the File daemon during an Incremental backup. If it is
directly written to tape, the tape will start and stop or shoe−shine as it is often called causing tape wear.
By first writing the data to disk, then writing it to tape, the tape can be kept in continual motion.

•

While the spooled data is being written to the tape, the despooling process has exclusive use of the tape.
This means that you can spool multiple simultaneous jobs to disk, then have them very efficiently
despooled one at a time without having the data blocks from several jobs intermingled, thus substantially
improving the time needed to restore files.

•

Writing to a tape can be slow. By first spooling your data to disk, you can often reduce the time the File
daemon is running on a system, thus reducing downtime, and/or interference with users.

•

Data spooling is exactly that "spooling". It is not a way to first write a "backup" to a disk file and then to a tape.
When the backup spooled to disk, it is not complete and cannot be restored until it is written to tape. In a future
version, Bacula will support writing a backup to disk then later Migrating or Copying it to a tape.

The remainder of this chapter explains the various directives that you can use in the spooling process.

Data Spooling Directives

The following directives can be used to control data spooling.

To turn data spooling on/off at the Job level in the Job resource in the Director's conf file (default no).•

SpoolData = yes/no

To override the Job specification in a Schedule Run directive in the Director's conf file.•

SpoolData = yes/no

To limit the maximum total size of the spooled data for a particular device. Specified in the Device
resource of the Storage daemon's conf file (default unlimited).

•

Maximum Spool Size = size

Where size is a the maximum spool size for all jobs specified in bytes.

To limit the maximum total size of the spooled data for a particular device for a single job. Specified in
the Device Resource of the Storage daemon's conf file (default unlimited).

•

Maximum Job Spool Size = size

Where size is the maximum spool file size for a single job specified in bytes.

To specify the spool directory for a particular device. Specified in the Device Resource of the Storage
daemon's conf file (default, the working directory).

•

Data Spooling 225

Spool Directory = directory

!!! MAJOR WARNING !!!

Please be very careful to exclude the spool directory from any backup, otherwise, your job will write enormous
amounts of data to the Volume, and most probably terminate in error. This is because in attempting to backup the
spool file, the backup data will be written a second time to the spool file, and so on ad infinum.

Another advice is to always specify the maximum spool size so that your disk doesn't completely fill up. In
principle, data spooling will properly detect a full disk, and despool data allowing the job to continue. However,
attribute spooling is not so kind to the user. If the disk on which attributes are being spooled fills, the job will be
canceled.

Other Points

When data spooling is enabled, Bacula automatically turns on attribute spooling. In other words, it also
spools the catalog entries to disk. This is done so that in case the job fails, there will be no catalog entries
pointing to non−existent tape backups.

•

Attribute despooling is done at the end of the job, as a consequence, after Bacula stops writing the data to
the tape, there may be a pause while the attributes are sent to the Directory and entered into the catalog
before the job terminates.

•

Attribute spool files are always placed in the working directory.•
When Bacula begins despooling data spooled to disk, it takes exclusive use of the tape. This has the
major advantage that in running multiple simultaneous jobs at the same time, the blocks of several jobs
will not be intermingled.

•

It probably does not make a lot of sense to enable data spooling if you are writing to disk files.•
It is probably best to provide as large a spool file as possible to avoid repeatedly spooling/despooling.
Also, while a job is despooling to tape, the File daemon must wait (i.e. spooling stops for the job while it
is despooling).

•

If you are running multiple simultaneous jobs, Bacula will continue spooling other jobs while one is
despooling to tape, provided there is sufficient spool file space.

•

Backing Up to Disk Volumes Index Frequently Asked Questions

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Data Spooling Index Tips and Suggestions

Bacula Storage Management System

!!! MAJOR WARNING !!! 226

http://www.bacula.org/

Bacula Frequently Asked Questions
See the bugs section of this document for a list of known bugs and solutions.

What is Bacula?

Bacula is a network backup and restore program.
Does Bacula support Windows?

Yes, Bacula compiles and runs on Windows machines (Win98, WinMe, WinXP, WinNT, and Win2000).
We provide a binary version of the Client (bacula−fd), but have not tested the Director nor the Storage
daemon. Note, Win95 is no longer supported because it doesn't have the GetFileAttributesExA API call.

What language is Bacula written in?

It is written in C++, but it is mostly C code using only a limited set of the C++ extensions over C. Thus
Bacula is completely compiled using the C++ compiler. There are several modules, including the Win32
interface that are written using the object oriented C++ features. Over time, we are slowly adding a larger
subset of C++.

On what machines does Bacula run?

Bacula builds and executes on RedHat Linux (versions RH7.1−RHEL 3.0, SuSE, Gentoo, Debian,
Mandrake, ...), FreeBSD, Solaris, Alpha, SGI (client), NetBSD, OpenBSD, Mac OS X (client), and
Win32 (client).
Bacula has been my only backup tool for over four years backing up 5 machines nightly (3 Linux boxes
running RedHat, a WinXP machine, and a WinNT machine).

Is Bacula Stable?

Yes, it is remarkably stable, but remember, there are still a lot of unimplemented or partially
implemented features. With a program of this size (100,000+ lines of C++ code not including the SQL
programs) there are bound to be bugs. The current test environment (a twisted pair local network and a
HP DLT backup tape) is rather ideal, so additional testing on other sites is necessary. The File daemon
has never crashed −− running months at a time with no intervention. The Storage daemon is remarkably
stable with most of the problems arising during labeling or switching tapes. Storage daemon crashes are
rare. The Director, given the multitude of functions it fulfills is also relatively stable. In a production
environment, it rarely if ever crashes. Of the three daemons, the Director is the most prone to having
problems. It frequently runs several months with no problems.

There are a number of reasons for this stability. 1. The program was largely written by one person to date
(Kern). 2. The program constantly is checking the chain of allocated memory buffers to ensure that no
overruns have occurred. 3. All memory leaks (orphaned buffers) are reported each time the program
terminates. 4. Any signal (segmentation fault, ...) generates a traceback that is emailed to the developer.
This permits quick resolution of bugs even if they only show up rarely in a production system, 5. There is
a reasonably comprehensive set of regression tests that avoids re−creating the most common errors in
new versions of Bacula.

Bacula Frequently Asked Questions 227

I'm Getting Authorization Errors. What is Going On?

For security reasons, Bacula requires that both the File daemon and the Storage daemon know the name
of the Director as well as his password. As a consequence, if you change the Director's name or
password, you must make the corresponding change in the Storage daemon and in the File daemon
configuration files.
During the authorization process, the Storage daemon and File daemon also require that the Director
authenticate itself, so both ends require the other to have the correct name and password.

If you have edited the conf files and modified any name or any password, then your best bet is to go back
to the original conf files generated by the Bacula installation process. Make only the absolutely necessary
modifications to these files −− e.g. add the correct email address. Then follow the instructions in the
Running Bacula chapter of this manual. You will run a backup to disk and a restore. Only when that
works, should you begin customization of the conf files.

Here is sort of a picture of what names/passwords in which files/Resources must match up:

Director −− bacula−dir.conf: Console −− bconsole.conf
Director { Director {
 Name = fw−dir <========|====> Name = fw−dir
 Password = aaa <=============> Pasword = aaa
 ... | ...
} | }
 |
 | ======================
 | SD −− bacula−sd.conf
Storage { | Device {
 Name = fw−sd | ...
 Device = DDS−4 <============> Name = DDS−4
 MediaType = DDS−4 <============> MediaType = DDS−4
 Address = fd−sd | ...
 Password = bbb <=====| | }
 ... | | Director {
} | |===> Name = fw−dir
 |======> Password = bbb
 | }
 |
 | =====================
 | FD −− bacula−fd.conf
Client { | Director {
 Name = fw−fd |===> Name = fw−dir
 Password = ccc <============> Password = ccc

} }

In the left column, you will find the Director, Storage, and Client resources, with their names and
passwords −− these are all in bacula−dir.conf. In the right column are where the corresponding values
should be found in the Console, Storage daemon (SD), and File daemon (FD) configuration files.

Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why?

There are several reasons why Bacula could not contact a client on a different machine. They are:

Bacula Storage Management System

Bacula Frequently Asked Questions 228

It is a Windows Client, and the client died because of an improper configuration file. Check that
the Bacula icon is in the system tray and the the menu items work. If the client has died, the icon
will disappear only when you move the mouse over the icon.

◊

The Client address or port is incorrect or not resolved by DNS. See if you can ping the client
machine using the same address as in the Client record.

◊

You have a firewall, and it is blocking traffic on port 9102 between the Director's machine and
the Clients machine (or on port 9103 between the Client and the Storage daemon machines).

◊

Your password or names are not correct in both the Director and the Client machine. Try
configuring everything identical to how you run the client on the same machine as the Director,
but just change the Address. If that works, make the other changes one step at a time until it
works.

◊

My Catalog is Full of Test Runs, How Can I Start Over?

If you are using MySQL do the following:
 cd <bacula−source>/src/cats
 ./drop_mysql_tables
 ./make_mysql_tables

If you are using SQLite, do the following:

 Delete bacula.db from your working directory.
 cd <bacula−source>/src/cats
 ./drop_sqlite_tables
 ./make_sqlite_tables

Then write an EOF on each tape you used with Bacula using:

mt −f /dev/st0 rewind
mt −f /dev/st0 weof

where you need to adjust the device name for your system.

I Run a Restore Job and Bacula Hangs. What do I do?

On Bacula version 1.25 and prior, it expects you to have the correct tape mounted prior to a restore. On
Bacula version 1.26 and higher, it will ask you for the tape, and if the wrong one it mounted, it will
inform you.
If you have previously done an unmount command, all Storage daemon sessions (jobs) will be
completely blocked from using the drive unmounted, so be sure to do a mount after your unmount. If in
doubt, do a second mount, it won't cause any harm.

I Cannot Get My Windows Client to Start Automatically?

You are probably having one of two problems: either the Client is dying due to an incorrect configuration
file, or you didn't do the Installation commands necessary to install it as a Windows Service.
For the first problem, see the next FAQ question. For the second problem, please review the Windows
Installation instructions in this manual.

Bacula Storage Management System

Bacula Frequently Asked Questions 229

My Windows Client Immediately Dies When I Start It

The most common problem is either that the configuration file is not where it expects it to be, or that
there is an error in the configuration file. You must have the configuration file in
c:\bacula\bin\bacula−fd.conf.
To see what is going on when the File daemon starts on Windows, do the following:

 Start a DOS shell Window.
 cd c:\bacula\bin
 bacula−fd −t >out
 type out

Calling bacula−fd with redirection (>) will write the diagnostic output to the file out which you can then
list. The −t option tells Bacula to read the configuration file and then exit.

When I Start the Console, the Error Messages Fly By. How can I see them?

Either use a shell window with a scroll bar, or use the gnome−console. In any case, you probably should
be logging all output to a file, and then you can simply view the file using an editor or the less program.
To log all output, I have the following in my Director's Message resource definition:
 append = "/home/kern/bacula/bin/log" = all, !skipped

Obviously you will want to change the filename to be appropriate for your system.

I didn't realize that the backups were not working on my Windows Client. What should I do?

You should be sending yourself an email message for each job. This will avoid the possibility of not
knowing about a failed backup. To do so put something like:
 Mail = yourname@yourdomain = all, !skipped

in your Director's message resource. You should then receive one email for each Job that ran. When you
are comfortable with what is going on (it took me 9 months), you might change that to:

 MailOnError = yourname@yourdomain = all, !skipped

then you only get email messages when a Job errors as is the case for your Windows machine.

You should also be logging the Director's messages, please see the previous FAQ for how to do so.

All my Jobs are scheduled for the same time. Will this cause problems?

No, not at all. Bacula will schedule all the Jobs at the same time, but will run them one after another
unless you have increased the number of simultaneous jobs in the configuration files for the Director, the
File daemon, and the Storage daemon. The appropriate configuration record is Maximum Concurrent
Jobs = nn. At the current time, we recommend that you leave this set to 1 for the Director.

Bacula Storage Management System

Bacula Frequently Asked Questions 230

Can Bacula Backup My System To Files instead of Tape?

Yes, in principle, Bacula can backup to any storage medium as long as you have correctly defined that
medium in the Storage daemon's Device resource. For an example of how to backup to files, please see
the Pruning Example in the Recycling chapter of this manual. Also, there is a whole chapter devoted to
Backing Up to Disk.

Can Bacula Backup and Restore Files Greater than 2 Giga bytes in Size?

If your operating system permits it, and you are running Bacula version 1.26 or later, the answer is yes.
To the best of our knowledge all client system supported by Bacula can handle files larger than 2 Giga
bytes.

I Started A Job then Decided I Really Did Not Want to Run It. Is there a better way than ./bacula stop to stop it?

Yes, you normally should use the Console command cancel to cancel a Job that is either scheduled or
running. If the Job is scheduled, it will be marked for cancellation and will be canceled when it is
scheduled to start. If it is running, it will normally terminate after a few minutes. If the Job is waiting on
a tape mount, you may need to do a mount command before it will be canceled.

Why have You Trademarked the Name Bacula
®
?

We have trademarked the name Bacula to ensure that all media written by any program named Bacula
will always be compatible. Anyone may use the name Bacula, even in a derivative product as long as it
remains totally compatible in all respects with the program defined here.

Why is Your Online Document for Version 1.35 of Bacula when the Currently Release Version is 1.34?

As Bacula is being developed, the document is also being enhanced, more often than not it has
clarifications of existing features that can be very useful to our users, so we publish the very latest
document. Fortunately it is rare that there are confusions with new features.
If you want to read a document that pertains only to a specific version, please use the one distributed in
the source code.

How Can I Be Sure that Bacula Really Saves and Restores All Files?

It is really quite simple, but took me awhile to figure out how to "prove" it. First make a Bacula Rescue
disk, see the Disaster Recovery Using Bacula of this manual. Second, you run a full backup of all your
files on all partitions. Third, you run an Verify InitCatalog Job on the same FileSet, which effectively
makes a record of all the files on your system. Fourth, you run a Verify Catalog job and assure yourself
that nothing has changed (well, between an InitCatalog and Catalog one doesn't expect anything). Then
do the unthinkable, write zeros on your MBR (master boot record) wiping out your hard disk. Now,
restore your whole system using your Bacula Rescue disk and the Full backup you made, and finally
re−run the Verify Catalog job. You will see that with the exception of the directory modification and
access dates and the files changed during the boot, your system is identical to what it was before you
wiped your hard disk.

I did a Full backup last week, but now in running an Incremental, Bacula says it did not find a FULL backup
time, so it did a FULL backup. Why?

Bacula Storage Management System

Bacula Frequently Asked Questions 231

Before doing an Incremental or a Differential backup, Bacula checks to see if there was a prior Full
backup of the same Job that terminated successfully. If so, it uses the date that full backup started as the
time for comparing if files have changed. If Bacula does not find a successfully full backup, it proceeds
to do one. Perhaps you canceled the full backup, or it terminated in error. In such cases, the full backup
will not be successful. You can check by entering list jobs and look to see if there is a prior Job with the
same Name that has Level F and JobStatus T (normal termination).
Another reason why Bacula may not find a suitable Full backup is that every time you change the
FileSet, Bacula will require a new Full backup. This is necessary to ensure that all files are properly
backed up in the case where you have added more files to the FileSet. Beginning with version 1.31, the
FileSets are also dated when they are created, and this date is displayed with the name when you are
listing or selecting a FileSet. For more on backup levels see below.

How Can You Claim to Handle Unlimited Path and Filename Lengths when All Other Programs Have Fixed
Limits?

Most of those other programs have been around for a long time, in fact since the beginning of Unix,
which means that they were designed for rather small fixed length path and filename lengths. Over the
years, these restrictions have been relaxed allowing longer names. Bacula on the other hand was designed
in 2000, and so from the start, Path and Filenames have been keep in buffers that start at 256 bytes in
length but can grow as needed to handle any length. Most of the work is carried out by lower level
routines making the coding rather easy.

What Is the Really Unique Feature of Bacula?

Well, it is hard to come up with unique features when backup programs for Unix machines have been
around since the 1960s. That said, I believe that Bacula is the first and only program to use a standard
SQL interface to its catalog database. Although this adds a bit of complexity and possibly overhead, it
provides an amazingly rich set of features that are easy to program and enhance. The current code has
barely scratched the surface in this regard (version 1.31).
The second feature, which gives a lot of power and flexibility to Bacula is the Bootstrap record
definition.

The third unique feature, which is currently (1.30) unimplemented, and thus can be called vaporware :−),
is Base level saves. When implemented, this will enormously reduce tape usage.

If I Do Run Multiple Simultaneous Jobs, How Can I Force One Particular Job to Run After Another Job?

Yes, you can set Priorities on your jobs so that they run in the order you specify. Please see: the Priority
record in the Job resource.

I Am Not Getting Email Notification, What Can I Do?

The most common problem is that you have not specified a fully qualified email address and your bsmtp
server is rejecting the mail. The next most common problem is that your bsmtp server doesn't like the
syntax on the From part of the message. For more details on this and other problems, please see the
Getting Email Notification to Work section of the Tips chapter of this manual. The section Getting
Notified of Job Completion of the Tips chapter may also be useful. For more information on the bsmtp
mail program, please see bsmtp in the Volume Utility Tools chapter of this manual.

Bacula Storage Management System

Bacula Frequently Asked Questions 232

I Change Recycling, Retention Periods, or File Sizes in my Pool Resource and they Still Don"t Work.

The different variables associated with a Pool are defined in the Pool Resource, but are actually read by
Bacula from the Catalog database. On Bacula versions prior to 1.30, after changing your Pool Resource,
you must manually update the corresponding values in the Catalog by using the update pool command
in the Console program. In Bacula version 1.30, Bacula does this for you automatically every time it
starts.
When Bacula creates a Media record (Volume), it uses many default values from the Pool record. If you
subsequently change the Pool record, the new values will be used as a default for the next Volume that is
created, but if you want the new values to apply to existing Volumes, you must manually update the
Volume Catalog entry using the update volume command in the Console program.

I Have Configured Compression On, But None of My Files Are Compressed. Why?

There are two kinds of compression. One is tape compression. This is done by the tape drive hardware,
and you either enable or disable it with system tools such as mt. This compression works independently
of Bacula.
Bacula also has compression code, which is normally used only when backing up to file Volumes. There
are two conditions for this "software" to be enabled.

You must have the zip development libraries loaded on your system when building Bacula and
Bacula must find this library, normally /usr/lib/libz.a. On RedHat systems, this library is
provided by the zlib−devel rpm.

1.

If the library is found by Bacula during the ./configure it will be indicated on the config.out line
by:

 ZLIB support: yes

You must add the compression=gzip option on your Include statement in the Director's
configuration file.

2.

Bacula is Asking for a New Tape After 2 GB of Data but My Tape holds 33 GB. Why?

There are several reasons why Bacula will request a new tape.

There is an I/O error on the tape. Bacula prints an error message and requests a new tape. Bacula
does not attempt to continue writing after an I/O error.

◊

Bacula encounters and end of medium on the tape. This is not always distinguishable from an I/O
error.

◊

You have specifically set some size limitation on the tape. For example the Maximum Volume
Bytes or Maximum Volume Files in the Director's Pool resource, or Maximum Volume Size in
the Storage daemon's Device resource.

◊

Bacula is Not Doing the Right Thing When I Request an Incremental Backup. Why?

As explained in one of the previous questions, Bacula will automatically upgrade an Incremental or
Differential job to a Full backup if it cannot find a prior Full backup or a suitable Full backup. For the
gory details on how/when Bacula decides to upgrade levels please see the Level record in the Director's

Bacula Storage Management System

Bacula Frequently Asked Questions 233

configuration chapter of this manual.
If after reading the above mentioned section, you believe that Bacula is not correctly handling the level
(Differential/Incremental), please send us the following information for analysis:

Your Director's configuration file.♦
The output from list jobs covering the period where you are having the problem.♦
The Job report output from the prior Full save (not critical).♦
An llist jobid=nnn where nnn is the JobId of the prior Full save.♦
The Job report output from the save that is doing the wrong thing (not critical).♦
An llist jobid=nnn where nnn is the JobId of the job that was not correct.♦
An explanation of what job went wrong and why you think it did.♦

The above information can allow us to analyze what happened, without it, there is not much we can do.

I am Backing Up an Offsite Machine with an Unreliable Connection. The Director Waits Forever for the Client
to Contact the SD. What Can I Do.

Bacula was written on the assumption that it will have a good TCP/IP connection between all the
daemons. As a consequence, the current Bacula doesn't deal with faulty connection very well. This
situation is slowly being corrected over time.
There are several things you can do to improve the situation.

Upgrade to version 1.32 and use the new SDConnectTimeout record. For example, set:♦

 SD Connect Timeout = 5 min

in the FileDaemon resource.
Run these kinds of jobs after all other jobs.♦

When I ssh into a machine and start Bacula then attempt to exit, ssh hangs forever.

This happens because Bacula leaves stdin, stdout, and stderr open for debug purposes. To avoid it, the
simplest thing to do is to redirect the output of those files to /dev/null or another file in your startup
script (the RedHat autostart scripts do this automatically). For example, you start the Director with:
 bacula−dir −c bacula−dir.conf ... 0>&1 2>&1 >/dev/null

and likewise for the other daemons.

I'm confused by the different Retention periods: File Retention, Job Retention, Volume Retention. Why are there
so many?

Yes, this certainly can be confusing. The basic reason for so many is to allow flexibility. The File records
take quite a lot of space in the catalog, so they are typically records you want to remove rather quickly.
The Job records, take very little space, and they can be useful even without the File records to see what
Jobs actually ran and when. One must understand that if the File records are removed from the catalog,
you cannot use the restore command to restore an individual file since Bacula no longer knows where it
is. However, as long as the Volume Retention period has not expired, the data will still be on the tape,
and can be recovered from the tape.

Bacula Storage Management System

Bacula Frequently Asked Questions 234

For example, I keep a 30 day retention period for my Files to keep my catalog from getting too big, but I
keep my tapes for a minimum of one year, just in case.

Why Does Bacula Ignore the MaxVolumeSize Set in my Pool?

The MaxVolumeSize that Bacula uses comes from the Media record, so most likely you changed your
Pool, which is used as the default for creating Media records, after you created your Volume. Check
what is in the Media record by doing:
llist Volume=xxx

If it doesn't have the right value, you can use:

update Volume=xxx

to change it.

In connecting to my Client, I get "ERR:Connection Refused. Packet Size too big from File
daemon:192.168.1.4:9102" Why?

This is typically a communications error resulting from one of the following:

Old versions of Bacula, usually a Win32 client, where two threads were using the same I/O
packet. Fixed in more recent versions. Please upgrade.

◊

Some other program such as an HP Printer using the same port (9102 in this case).◊
If it is neither of the above, please submit a bug report at bugs.bacula.org.

Data Spooling Index Tips and Suggestions

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

The Windows Version of Bacula Index Disaster Recovery Using a Bacula Rescue
Floppy

Bacula Storage Management System

Bacula Frequently Asked Questions 235

http://bugs.bacula.org
http://www.bacula.org/

Disaster Recovery Using Bacula

General

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise the work of
recovering your system and your files will be considerably greater. For example, if you have not previously
saved the partitioning information for your hard disk, how can you properly rebuild it if the disk must be
replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very operating system
dependent. As a consequence, this chapter will discuss in detail disaster recovery (also called Bare Metal
Recovery) for Linux and Solaris. For Solaris, the procedures are still quite manual. For FreeBSD the same
procedures may be used but they are not yet developed. For Win32, no luck. Apparently an "emergency boot"
disk allowing access to the full system API without interference does not exist.

Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into account before a
disaster strikes.

If the building which houses your computers burns down or is otherwise destroyed, do you have off−site
backup data?

•

Disaster recovery is much easier if you have several machines. If you have a single machine, how will
you handle unforeseen events if your only machine is down?

•

Do you want to protect your whole system and use Bacula to recover everything? or do you want to try to
restore your system from the original installation disks and apply any other updates and only restore user
files?

•

Steps to Take Before Disaster Strikes

Create a Bacula Rescue CDROM for each of your Linux systems. Note, it is possible to create one
CDROM by copying the bacula−hostname directory from each machine to the machine where you will
be burning the CDROM.

•

Ensure that you always have a valid bootstrap file for your backup that is saved to an alternate machine.
This will permit you to easily do a full restore of your system.

•

If possible copy your catalog nightly to an alternate machine. If you have a valid bootstrap file, this is not
necessary, but can be very useful if you do not want to reload everything. .

•

Ensure that you always have a valid bootstrap file for your catalog backup that is saved to an alternate
machine. This will permit you to restore your catalog more easily if needed.

•

Test using the Bacula Rescue CDROM before you are forced to use it in an emergency situation.•

Bare Metal Recovery on Linux with a Bacula Rescue CDROM

The remainder of this section concerns recovering a Linux computer, and parts of it relate to the Red Hat version
of Linux. The Solaris procedures can be found below under the Solaris Bare Metal Recovery section of this
chapter.

Disaster Recovery Using Bacula 236

If you wish to use a floppy for restoration, please see the chapter Bare Metal Floppy Recovery on Linux with a
Bacula Floppy Rescue Disk.

A so called "Bare Metal" recovery is one where you start with an empty hard disk and you restore your machine.
There are also cases where you may lose a file or a directory and want it restored. Please see the previous chapter
for more details for those cases.

Bare Metal Recovery assumes that you have the following items for your system:

A Bacula Rescue CDROM containing a copy of your OS and a copy of your hard disk information, as
well as a statically linked version of the Bacula File daemon.

•

A full Bacula backup of your system possibly including Incremental or Differential backups since the last
Full backup

•

A second system running the Bacula Director, the Catalog, and the Storage daemon. (this is not an
absolute requirement, but how to get around it is not yet documented here)

•

Restrictions

In addition, to the above assumptions, the following conditions or restrictions apply:

Linux only −− tested only on Red Hat, but should work on other Linuxes•
The scripts handle only SCSI and IDE disks•
All partitions will be recreated, but only ext2, ext3, rfs and swap partitions will be reformatted. Any
other partitions such as Windows FAT partitions will not be formatted by the scripts, but you can do it by
hand

•

You are using either lilo or grub as a boot loader, and you know which one (not automatically detected)•
The partitioning and reformating scripts will *should* work with RAID devices, but probably not with
other "complicated" disk partitioning/formating schemes. They also should work with Reiser filesystems.
Please check them carefully. You will probably need to edit the scripts by hand to make them work.

•

Directories

To build the Bacula Rescue CDROM, you will find the necessary scripts in rescue/linux/cdrom subdirectory of
the Bacula source code.

Preparation for a Bare Metal Recovery

Before you can do a Bare Metal recovery, you must create a Bacula Rescue CDROM, which will contain
everything you need to begin recovery. This assumes that you will have your Directory and Storage daemon
running on a different machine. If you want to recover a machine where the Director and/or the database were
previously running things will be much more complicated.

Creating a Bacula Rescue CDROM

The primary goals of the Bacula rescue CD are:

NOT to be a general or universal recovery disk.•
to capture and setup a restore environment for a single system running as a Client.•
to capture the current state of the hard disks on your system, so that they can be easily restored from•

Bacula Storage Management System

Restrictions 237

pre−generated scripts.
to create and save a statically linked copy of your current Bacula FD.•
to be relatively easy to create. In most cases you simply type make all in the rescue/linux/cdrom
directory, then burn the ISO image created. In contrast, if you have looked at any of the documentation
on how to remaster a CD or how to roll your own, your head will spin (at least mine did).

•

to be easy for you to add any additional files, binaries, or libraries to the CD.•
to build and work on any (or almost any) Linux flavor or release.•

On of the main of the advantages of a Bacula Rescue CDROM is that it contains a bootable copy of your system,
so you should be familiar with it.

You should probably make a new rescue CDROM each time you make any major updates to your kernel, and
every time you upgrade a major version of Bacula.

The whole process with the exception of burning the CDROM is done with the following commands:

(Build a working version of Bacula in the
 bacula−source directory)
cd <bacula−source>
./configure (your options)
make
cd <bacula−source>/rescue/linux/cdrom
su (become root)
make all

At this point, if the scripts are successful, they should have done the following things:

Made a copy of your kernel and its essential files.•
Copied a number of binary files from your system.•
Copied all the necessary shared libraries to run the above binary files.•
Made a statically−linked version of your File daemon and copied it into the CDROM build area.•
Made an ISO image and left it in bootcd.iso•

Once this is accomplished, you need only burn it into a CDROM. This can be done directly from the makefile
with:

make burn

However, you may need to modify the Makefile to properly specify your CD burner as the detection process is
complicated especially if you have two CDROMs or do not have cdrecord loaded on your system. If you find
that the make burn does not work for you, try doing a:

make scan

and use the output of that to modify the Makefile accordingly.

The "make all" that you did above actually does the equivalent to the following:

make kernel
make binaries
make bacula
make iso

Bacula Storage Management System

Restrictions 238

If you wish, you can modify what you put on the CDROM and redo any part of the make that you wish. For
example, if you want to add a new directory, you might do the first three makes, then add a new directory to the
CDROM, and finally do a "make iso". Please see the README file in the rescue/linux/cdrom directory for
instructions on changing the contents of the CDROM.

At the current time, the size of the CDROM is about 50MB (compressed to about 20MB), so there is quite a bit
more room for additional program. Keep in mind that when this CDROM is booted, *everything* is in memory,
so the total size cannot exceed your memory size, and even then you will need some reserve memory for running
programs, ...

Putting Two or More Systems on Your Rescue Disk

You can put multiple systems on the same rescue CD if you wish. This is because the information that is specific
to your OS will be stored in the /bacula−hostname directory, where hostname is the name of the host on which
you are building the CD. Suppose for example, you have two systems. One named client1 and one named
client2. Assume also that your CD burner is on client1, and that is the machine we start on, and that we can ssh
into client2 and also client2's disks are mounted on client1.

ssh client2
cd <bacula−source>
./configure (your options)
make
cd rescue/linux/cdrom
su
(enter root password)
make bacula
exit
exit

Thus we have just built a Bacula rescue directory on client2. Now, on client1, we copy the appropriate directory
to two places (explained below), then build an ISO and burn it:

cd <bacula−source>
./configure (your options)
make
cd rescue/linux/cdrom
su
(enter root password)
c=/mnt/client2/home/user/bacula/rescue/linux/cdrom
cp −a $c/roottree/bacula−client2 roottree
cp −a $c/roottree/bacula−client2 cdtree
make all
make burn
exit

In summary, with the above commands, we first build a Bacula directory on client2 in roottree/bacula−client2,
then we copied the bacula−client2 directory into the client1's roottree so it is available in memory after booting,
and we also copied it into the cdtree so it will also be on the CD as a separate directory and thus can be read
without booting the CDROM. Then we made and burned the CDROM for client1, which of course, contains the
client2 data.

Bacula Storage Management System

Putting Two or More Systems on Your Rescue Disk 239

Restoring a Client System

Now, let's assume that your hard disk has just died and that you have replaced it with an new identical drive. In
addition, we assume that you have:

A recent Bacula backup (Full plus Incrementals)1.
A Bacula Rescue CDROM.2.
Your Bacula Director, Catalog, and Storage daemon running on another machine on your local network.3.

This is a relatively simple case, and later in this chapter, as time permits, we will discuss how you might recover
from a situation where the machine that crashes is your main Bacula server (i.e. has the Director, the Catalog, and
the Storage daemon).

You will take the following steps to get your system back up and running:

Boot with your Bacula Rescue CDROM.1.
Start the Network (local network)2.
Re−partition your hard disk(s) as it was before3.
Re−format your partitions4.
Restore the Bacula File daemon (static version)5.
Perform a Bacula restore of all your files6.
Re−install your boot loader7.
Reboot8.

Now for the details ...

Boot with your Bacula Rescue CDROM

When the CDROM boots, you will be presented with a script that looks like:

 Welcome to the Bacula Rescue Disk 1.1.0

To proceed, press the <ENTER> key or type "linux <runlevel>"

 linux 1 −> shell
 linux 2 −> login (default if ENTER pressed)
 linux 3 −> network started and login (network not working yet)
 linux debug −> print debug during boot then login

Normally, at this point, you simply press ENTER. However, you may supply options for the boot if you wish.

Once it has booted, you will be requested to login something like:

Welcome to the Bacula Rescue CDROM
2.4.21−15.0.4.EL #1 Wed Aug 4 03:08:03 EDT 2004

Please login using root and your root password ...
RescueCD login:

Note, you must enter the root password for the system on which you loaded the kernel or on which you did the
build of the CDROM. Once you are logged in, your will be in the home directory for root, and you can proceed

Bacula Storage Management System

Boot with your Bacula Rescue CDROM 240

to examine your system.

The complete Bacula rescue part of the CD will be in the directory: /bacula−hostname, where hostname is
replaced by the name of the host machine on which you did the build for the CDROM. This naming procedure
allows you to put multiple restore environments for each of your machines on a single CDROM if you so wish to
do. Please see the README document in the rescue/linux/cdrom directory for more information on adding to
the CDROM.

Start the Network

At this point, you should bring up your network. Normally, this is quite simple and requires just a few
commands. Please cd into the /bacula−hostname directory before continuing. To simplify your task, we have
created a script that should work in most cases by typing:

cd /bacula−hostname
./start_network

You can test it by pinging another machine, or pinging your broken machine machine from another machine. Do
not proceed until your network is up.

Partition Your Hard Disk(s)

Assuming that your hard disk crashed and needs repartitioning, proceed with:

./partition.hda

If you have multiple disks, do the same for each of them. For SCSI disks, the repartition script will be named:
partition.sda. If the script complains about the disk being in use, simply go back and redo the df command and
umount commands until you no longer have your hard disk mounted. Note, in many cases, if your hard disk was
seriously damaged or a new one installed, it will not automatically be mounted. If it is mounted, it is because the
emergency kernel found one or more possibly valid partitions.

If for some reason this procedure does not work, you can use the information in partition.hda to re−partition
your disks by hand using fdisk.

Format Your Hard Disk(s)

If you have repartitioned your hard disk, you must format it appropriately. The formatting script will put back
swap partitions, normal Unix partitions (ext2) and journaled partitions (ext3) as well as Reiser partitions (rei). Do
so by entering for each disk:

./format.hda

The format script will ask you if you want a block check done. We recommend to answer yes, but realize that for
very large disks this can take hours.

Mount the Newly Formatted Disks

Once the disks are partitioned and formatted, you can remount them with the mount_drives script. All your
drives must be mounted for Bacula to be able to access them. Run the script as follows:

./mount_drives

Bacula Storage Management System

Start the Network 241

df

The df command will tell you if the drives are mounted. If not, re−run the script again. It isn't always easy to
figure out and create the mount points and the mounts in the proper order, so repeating the ./mount_drives
command will not cause any harm and will most likely work the second time. If not, correct it by hand before
continuing.

Restore and Start the File Daemon

If you have booted with a Bacula Rescue CDROM, your statically linked Bacula File daemon and the
bacula−fd.conf file with be in the /bacula−hostname/bin directory. Make sure bacula−fd and bacula−fd.conf are
both there.

Edit the Bacula configuration file, create the working/pid/subsys directory if you haven't already done so above,
and start Bacula. Before starting Bacula, you will need to move it and bacula−fd.conf from
/bacula−hostname/bin, to the /mnt/disk/tmp directory so that it will be on your hard disk. Then start it with the
following command:

chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf

The above command starts the Bacula File daemon with your the proper root disk location (i.e. /mnt/disk/tmp. If
Bacula does not start correct the problem and start it. You can check if it is running by entering:

ps fax

You can kill Bacula by entering:

kill −TERM <pid>

where pid is the first number printed in front of the first occurrence of bacula−fd in the ps fax command.

Now, you should be able to use another computer with Bacula installed to check the status by entering:

status client=xxxx

into the Console program, where xxxx is the name of the client you are restoring.

One common problem is that your bacula−dir.conf may contain machine addresses that are not properly
resolved on the stripped down system to be restored because it is not running DNS. This is particularly true for
the address in the Storage resource of the Director, which may be very well resolved on the Director's machine,
but not on the machine being restored and running the File daemon. In that case, be prepared to edit
bacula−dir.conf to replace the name of the Storage daemon's domain name with its IP address.

Restore Your Files

On the computer that is running the Director, you now run a restore command and select the files to be restored
(normally everything), but before starting the restore, there is one final change you must make using the mod
option. You must change the Where directory to be the root by using the mod option just before running the job
and selecting Where. Set it to:

/

Bacula Storage Management System

Restore and Start the File Daemon 242

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly and then using a Where to specify a
destination of /mnt/disk. This is possible, however, the current version of Bacula always restores files to the new
location, and thus any soft links that have been specified with absolute paths will end up with /mnt/disk prefixed
to them. In general this is not fatal to getting your system running, but be aware that you will have to fix these
links if you do not use chroot.

Final Step

At this point, the restore should have finished with no errors, and all your files will be restored. One last task
remains and that is to write a new boot sector so that your machine will boot. For lilo, you enter the following
command:

./run_lilo

If you are using grub instead of lilo, you must enter the following:

./run_grub

Note, I've had quite a number of problems with grub because it is rather complicated and not designed to install
easily under a simplified system. So, if you experience errors or end up unexpectedly in a chroot shell, simply
exit back to the normal shell and type in the appropriate commands from the run_grub script by hand until you
get it to install. When you run the run_grub script, it will print the commands that you should manually enter if
that is necessary.

Reboot

First unmount all your hard disks, otherwise they will not be cleanly shutdown, then reboot your machine by
entering exit until you get to the main prompt then enter ctl−d. Once back to the main CDROM prompt, you will
need to turn the power off then back on to your machine to get it to reboot.

If everything went well, you should now be back up and running. If not, re−insert the emergency boot CDROM,
boot, and figure out what is wrong.

Restoring a Server

Above, we considered how to recover a client machine where a valid Bacula server was running on another
machine. However, what happens if your server goes down and you no longer have a running Director, Catalog,
or Storage daemon? There are several solutions:

Bring up static versions of your Director, Catalog, and Storage daemon.1.
Move your server to another machine.2.

The first option, is very difficult because it requires you to have created a static version of the Director and the
Storage daemon as well as the Catalog. If the Catalog uses MySQL or PostgreSQL, this may or may not be
possible. In addition, to loading all these programs on a bare system (quite possible), you will need to make sure
you have a valid driver for your tape drive.

The second suggestion is probably a much simpler solution, and one I have done myself. To do so, you might
want to consider the following steps:

Bacula Storage Management System

Final Step 243

If you are using MySQL or PostgreSQL, configure, build and install it from source (or user rpms) on
your new system.

•

Load the Bacula source code onto your new system, configure, install it, and create the Bacula database.•
If you have a valid saved Bootstrap file as created for your damaged machine with WriteBootstrap, use it
to restore the files to the damaged machine, where you have loaded a static Bacula File daemon using the
Bacula Rescue disk). This is done by using the restore command and at the yes/mod/no prompt, selecting
mod then specifying the path to the bootstrap file.

•

If you have the Bootstrap file, you should now be back up and running, if you do not have a Bootstrap
file, continue with the suggestions below.

•

Using bscan scan the last set of backup tapes into your MySQL, PostgreSQL or SQLite database.•
Start Bacula, and using the Console restore command, restore the last valid copy of the Bacula database
and the the Bacula configuration files.

•

Move the database to the correct location.•
Start the database, and restart Bacula. Then use the Console restore command, restore all the files on the
damaged machine, where you have loaded a Bacula File daemon using the Bacula Rescue disk.

•

Linux Problems or Bugs

Since every flavor and every release of Linux is different, there are likely to be some small difficulties with the
scripts, so please be prepared to edit them in a minimal environment. A rudimentary knowledge of vi is very
useful. Also, these scripts do not do everything. You will need to reformat Windows partitions by hand, for
example.

Getting the boot loader back can be a problem if you are using grub because it is so complicated. If all else fails,
reboot your system from your floppy but using the restored disk image, then proceed to a reinstallation of grub
(looking at the run−grub script can help). By contrast, lilo is a piece of cake.

FreeBSD Bare Metal Recovery

The same basic techniques described above also apply to FreeBSD. Although we don't yet have a fully automated
procedure, Alex Torres Molina has provided us with the following instructions with a few additions from Jesse
Guardiani and Dan Languille:

Boot with the FreeBSD installation disk1.
Go to Custom, Partition and create your slices and go to Label and create the particions that you want.
Apply changes.

2.

Go to Fixit to start a emergency console.3.
Create devs ad0 if don't exist under /mnt2/dev (in my situation) with MAKEDEV. The device or
devices you create depend on what hard drives you have. ad0 is your first ATA drive. da0 would by your
first SCSI drive. Under OS version 5 and greater, your device files are most likely automatically created
for you.

4.

mkdir /mnt/disk
this is the root of the new disk

5.

mount /mnt2/dev/ad0s1a /mnt/disk
mount /mnt2/dev/ad0s1c /mnt/disk/var
mount /mnt2/dev/ad0s1d /mnt/disk/usr
.....
The same hard drive isssues as above apply here too. Note, under OS version 5 or higher, your disk
devices may be in /dev not /mnt2/dev.

6.

Bacula Storage Management System

Linux Problems or Bugs 244

Network configuraion (ifconfig xl0 ip/mask + route add default ip−gateway)7.
mkdir /mnt/disk/tmp8.
cd /mnt/disk/tmp9.
Copy bacula−fd and bacula−fd.conf to this path10.
If you need to use sftp to copy files then you must do this:
ln −s /mnt2/usr/bin /usr/bin

11.

chmod u+x bacula−fd12.
Modify bacula−fd.conf to fit this machine13.
Copy /bin/sh to /mnt/disk, neccesary for chroot14.
Don't forget to put your bacula−dir's IP address and domain name in /mnt/disk/etc/hosts if it's not on a
public net. Otherwise the FD on the machine you are restoring to won't be able to contact the SD and
DIR on the remote machine.

15.

mkdir −p /mnt/disk/var/db/bacula16.
chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf
to start bacula−fd

17.

Now you can go to bacula−dir and restore the job with the entire contents of the broken server.18.
You must create /proc19.

Solaris Bare Metal Recovery

The same basic techniques described above apply to Solaris:

the same restrictions as those given for Linux apply•
you will need to create a Bacula Rescue disk•

However, during the recovery phase, the boot and disk preparation procedures are different:

there is no need to create an emergency boot disk since it is an integrated part of the Solaris boot.•
you must partition and format your hard disk by hand following manual procedures as described in W.
Curtis Preston's book "Unix Backup Recovery"

•

Once the disk is partitioned, formatted and mounted, you can continue with bringing up the network and
reloading Bacula.

Preparing Solaris Before a Disaster

As mentioned above, before a disaster strikes, you should prepare the information needed in the case of
problems. To do so, in the rescue/solaris subdirectory enter:

su
./getdiskinfo
./make_rescue_disk

The getdiskinfo script will, as in the case of Linux described above, create a subdirectory diskinfo containing the
output from several system utilities. In addition, it will contain the output from the SysAudit program as
described in Curtis Preston's book. This file diskinfo/sysaudit.bsi will contain the disk partitioning information
that will allow you to manually follow the procedures in the "Unix Backup Recovery" book to repartition and
format your hard disk. In addition, the getdiskinfo script will create a start_network script.

Once you have your your disks repartitioned and formatted, do the following:

Bacula Storage Management System

Solaris Bare Metal Recovery 245

Start Your Network with the start_network script•
Restore the Bacula File daemon as documented above•
Perform a Bacula restore of all your files using the same commands as described above for Linux•
Re−install your boot loader using the instructions outlined in the "Unix Backup Recovery" book using
installboot

•

Bugs and Other Considerations

Directory Modification and Access Times are Modified on pre−1.30 Baculas

When a pre−1.30 version of Bacula restores a directory, it first must create the directory, then it populates the
directory with its files and subdirectories. The act of creating the files and subdirectories updates both the
modification and access times associated with the directory itself. As a consequence, all modification and access
times of all directories will be updated to the time of the restore.

This has been corrected in Bacula version 1.30 and later. The directory modification and access times is reset to
the value saved in the backup after all the files and subdirectories have been restored. This has been tested and
verified on normal restore operations, but not verified during a bare metal recovery.

Strange Bootstrap Files

If any of you look closely at the bootstrap file that is produced and used for the restore (I sure do), you will
probably notice that the FileIndex item does not include all the files saved to the tape. This is because in some
instances there are duplicates (especially in the case of an Incremental save), and in such circumstances, Bacula
restores only the last of multiple copies of a file or directory.

Disaster Recovery of Win32 Systems

Due to open system files, and registry problems, Bacula cannot save and restore a complete Win2K/XP/NT
environment.

A suggestion by Damian Coutts using Microsoft's NTBackup utility in conjunction with Bacula should permit a
Full bare metal restore of Win2K/XP (and possibly NT systems). His suggestion is to do an NTBackup of the
critical system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the system state and not all the user files, and
the /F c:\systemstate.bkf specifies where to write the state file. this file must then be saved and restored by
Bacula.

To restore the system state, you first reload a base operating system, then you would use Bacula to restore all the
users files and to recover the c:\systemstate.bkf file, and finally, run NTBackup and catalogue the system
statefile, and then select it for restore. The documentation says you can't run a command line restore of the
systemstate.

This procedure has been confirmed to work by Ludovic Strappazon −− many thanks!

Bacula Storage Management System

Bugs and Other Considerations 246

Resetting Directory and File Ownership and Permissions on
Win32 Systems

Bacula versions after 1.31 should properly restore ownership and permissions on all WinNT/XP/2K systems. If
you do experience problems, generally in restores to alternate directories because higher level directories were
not backed up by Bacula, you can correct any problems with the SetACL available under the GPL license at:
http://sourceforge.net/projects/setacl/.

Alternate Disaster Recovery Suggestion for Win32 Systems

Ludovic Strappazon has suggested an interesting way to backup and restore complete Win32 partitions. Simply
boot your Win32 system with a Linux Rescue disk as described above for Linux, install a statically linked
Bacula, and backup any of the raw partitions you want. Then to restore the system, you simply restore the raw
partition or partitions. Here is the email that Ludovic recently sent on that subject:

I've just finished testing my brand new cd LFS/Bacula
with a raw Bacula backup and restore of my portable.

I can't resist sending you the results: look at the rates !!!

hunt−dir: Start Backup JobId 100, Job=HuntBackup.2003−04−17_12.58.26
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:14
JobId: 100
Job: HuntBackup.2003−04−17_12.58.26
FileSet: RawPartition
Backup Level: Full
Client: sauvegarde−fd
Start time: 17−Apr−2003 12:58
End time: 17−Apr−2003 13:14
Files Written: 1
Bytes Written: 10,058,586,272
Rate: 10734.9 KB/s
Software Compression: None
Volume names(s): 000103
Volume Session Id: 2
Volume Session Time: 1050576790
Last Volume Bytes: 10,080,883,520
FD termination status: OK
SD termination status: OK
Termination: Backup OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

hunt−dir: Start Restore Job RestoreFilesHunt.2003−04−17_13.21.44
hunt−sd: Forward spacing to file 1.
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:54
JobId: 101
Job: RestoreFilesHunt.2003−04−17_13.21.44
Client: sauvegarde−fd
Start time: 17−Apr−2003 13:21
End time: 17−Apr−2003 13:54

Bacula Storage Management System

Resetting Directory and File Ownership and Permissions on Win32 Systems 247

http://sourceforge.net/projects/setacl/

Files Restored: 1
Bytes Restored: 10,056,130,560
Rate: 5073.7 KB/s
FD termination status: OK
Termination: Restore OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

Restoring to a Running System

If for some reason you want to do a Full restore to a system that has a working kernel, you will need to take care
not to overwrite the following files:

/etc/grub.conf
/etc/X11/Conf
/etc/fstab
/etc/mtab
/lib/modules
/usr/modules
/usr/X11R6
/etc/modules.conf

Additional Resources

Many thanks to Charles Curley who wrote Linux Complete Backup and Recovery HOWTO for the The Linux
Documentation Project. This is an excellent document on how to do Bare Metal Recovery on Linux systems, and
it was this document that made me realize that Bacula could do the same thing.

You can find quite a few additional resources, both commercial and free at Storage Mountain, formerly known as
Backup Central.

And finally, the O'Reilly book, "Unix Backup Recovery" by W. Curtis Preston covers virtually every backup and
recovery topic including bare metal recovery for a large range of Unix systems.

The Windows Version of Bacula Index Disaster Recovery Using a Bacula Rescue
Floppy

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Restoring to a Running System 248

http://www.tldp.org/HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO/index.html
http://www.tldp.org/
http://www.tldp.org/
http://www.backupcentral.com
http://www.bacula.org/

Bacula 1.36 User's Guide

Data Spooling Index Tips and Suggestions

Autochangers −− General

Beginning with version 1.23, Bacula provides autochanger support for reading and writing tapes. In order to
work with an autochanger, Bacula requires three things, each of which is explained in more detail after this list:

A script that actually controls the autochanger according to commands sent by Bacula. We furnish such a
script that works with mtx found in the depkgs distribution. This script works only with single drive
autochangers.

•

That each Volume (tape) to be used must be defined in the Catalog and have a Slot number assigned to it
so that Bacula knows where the Volume is in the autochanger. This is generally done with the label
command. See below for more details.

•

Modifications to your Storage daemon's Device configuration resource to identify that the device is a
changer, as well as a few other parameters.

•

Optionally, you can modify your Storage resource definition in the Director's configuration file so that
you are automatically prompted for the Slot when labeling a Volume.

•

Bacula uses its own mtx−changer script to interface with a a program that actually does the tape changing. Thus
in principle, mtx−changer can be adapted to function with any autochanger program. The current version of
mtx−changer works with the mtx program.

As of version 1.30, Bacula supports autochangers with barcode readers. This support includes two new Console
commands: label barcodes and update slots. For more details on these commands, see the "Barcode Support"
section below.

Current Bacula autochanger support does not include cleaning, stackers, or silos. However, under certain
conditions, you may be able to make Bacula work with stackers (gravity feed and such). Bacula supports only
single drive autochangers. Bacula does have code to operate multi−drive autochangers. However, the
implementation is only partial. See below for more details.

Autochangers Known to Work with Bacula

I hesitate to call these "supported" autochangers because the only autochanger that I have in my possession and
am able to test is the HP SureStore DAT40X6. All the other autochangers have been reported to work by Bacula
users. Note, in the Capacity/Slot column below, I quote the Compressed capacity per tape (or Slot).

OS Man. Media Model Slots Cap/Slot

Linux Adic
LTO−1/2, SDLT
320

Adic Scalar 24 24 100GB

Linux Adic LTO−2
Adic FastStor 2, Sun
Storedge L8

8 200GB

Bacula Storage Management System

Autochangers −− General 249

− Dell LTO−2
PowerValut
132T/136T

− 100GB

Linux Exabyte VXA2
VXA PacketLoader
1x10 2U

10 80/160GB

Linux Gentoo 1.4 Exabyte AIT−2 215A
15 (2
drives)

50GB

Linux HP DDS−4
SureStore
DAT−40X6

6 40GB

Linux HP Ultrium−2/LTO
MSL
6000/60030/5052

28 200/400GB

− HP DLT A4853 DLT 30 40/70GB

Linux HP (Compaq) DLT VI Compaq TL−895
96+4
import
export

35/70GB

SuSE 9.0 IBM LTO
IBM 3581 Ultrium
Tape Loader

7 200/400GB

− Overland LTO
Overland
LoaderXpress LTO

10−19 100GB

− Overland LTO
Overland Neo2000
LTO

26−30 100GB

FreeBSD 4.9
QUALSTAR
TLS−4210
(Qualstar)

AIT1: 36GB,
AIT2: 50GB all
uncomp

QUALSTAR
TLS−4210

12

AIT1:
36GB,
AIT2:
50GB all
uncomp

Linux Skydata> DLT ATL−L200 8 40/80

− Sony DDS−4 TSL−11000 8 40GB

FreeBSD
4.9−STABLE

Sony AIT−1 TSL−SA300C 4 45/70GB

− Storagetek DLT Timberwolf DLT 6 40/70

Solaris Sun 4mm DLT
Sun Desktop Archive
Python 29279

4 20GB

Linux Tandberg DLT VI VS 640 8? 35/70GB

Linux 2.6.x Tandberg Data SLR100 SLR100 Autoloader 8 50/100GB

Bacula Storage Management System

Autochangers −− General 250

In principle, if mtx will operate your changer correctly, then it is just a question of adapting the mtx−changer
script (or selecting one already adapted) for proper interfacing. You can find a list of autochangers supported by
mtx at the following link: http://mtx.badtux.net/compatibility.php. The home page for the mtx project can be
found at: http://mtx.badtux.net/.

Knowing What SCSI Devices You Have

Under Linux, you can

cat /proc/scsi/scsi

to see what SCSI devices you have available. You can also:

cat /proc/scsi/sg/device_hdr /proc/scsi/sg/devices

to find out how to specify their control address (/dev/sg0 for the first, /dev/sg1 for the second, ...) on the
Changer Device = Bacula directive.

Under FreeBSD, you can use:

camcontrol devlist

To list the SCSI devices as well as the /dev/passn that you will use on the Bacula Changer Device = directive.

Example Scripts

Please read the sections below so that you understand how autochangers work with Bacula. Although we supply
a default mtx−changer script, your autochanger may require some additional changes. If you want to see
examples of configuration files and scripts, please look in the <bacula−src>/examples/devices directory where
you will find an example HP−autoloader.conf Bacula Device resource, and several mtx−changer scripts that
have been modified to work with different autochangers.

Slots

To properly address autochangers, Bacula must know which Volume is in each slot of the autochanger. Slots are
where the changer cartridges reside when not loaded into the drive. Bacula numbers these slots from one to the
number of cartridges contained in the autochanger.

Bacula will not automatically use a Volume in your auotchanger unless it is labeled and the slot number is stored
in the catalog. For each Volume in your changer, you will, using the Console program, assign a slot. This
information is kept in Bacula's catalog database along with the other data for the volume. If no slot is given, or
the slot is set to zero, Bacula will not attempt to use the autochanger even if all the necessary configuration
records are present. In addition, the console mount command does not cause Bacula to operate the autochanger,
it only tells Bacula to read any tape that may be in the drive.

Multiple Devices

Some autochangers have more than one read/write device (drive). The current implementation has limited
support for multiple devices by using the Drive Index directive in the Device resource of the Storage daemon's

Bacula Storage Management System

Knowing What SCSI Devices You Have 251

http://mtx.badtux.net/compatibility.php
http://mtx.badtux.net/

configuration file. Drive numbers or the Device Index are numbered beginning at zero, which is the default. To
use the second Drive in an autochanger, you need to define a second Device resource and set the Drive Index to
one for that device. In general, the second device will have the same Changer Device (control channel) as the
first drive, but a different Archive Device.

The current implementation of Bacula does not coordinate between the two drives, so you must make sure that
Bacula doesn't attempt to mount the same Volume on both drives at the same time. There are a number of ways
to do this. One was is to use different pools for each drive.

Worse than the above, the mtx program apparently does not prevent two accesses to the same control device at
the same time, which means that if Bacula happens to attempt to call the mtx−changer script for two drives
simultaneously, something will break.

A user supplied modified version of the mtx−changer script, which does locking to avoid this problem can be
found in examples/autochangers/locking−mtx−changer. If you are using multiple drives, you will probably
want to modify this script to work for you.

Device Configuration Records

Configuration of autochangers within Bacula is done in the Device resource of the Storage daemon. Four records:
Autochanger, Changer Device, Changer Command, and Maximum Changer Wait control how Bacula uses
the autochanger.

These four records, permitted in Device resources, are described in detail below:

Autochanger = Yes|No
The Autochanger record specifies that the current device is or is not an autochanger. The default is no.

Changer Device = <device−name>
In addition to the Archive Device name, you must specify a Changer Device name. This is because most
autochangers are controlled through a different device than is used for reading and writing the cartridges.
For example, on Linux, one normally uses the generic SCSI interface for controlling the autochanger, but
the standard SCSI interface for reading and writing the tapes. On Linux, for the Archive Device =
/dev/nst0, you would typically have Changer Device = /dev/sg0. Note, some of the more advanced
autochangers will locate the changer device on /dev/sg1. Such devices typically have several drives and a
large number of tapes.
On FreeBSD systems, the changer device will typically be on /dev/pass0 through /dev/passn.

On Solaris, the changer device will typically be some file under /dev/rdsk.

Changer Command = <command>
This record is used to specify the external program to call and what arguments to pass to it. The
command is assumed to be a standard program or shell script that can be executed by the operating
system. This command is invoked each time that Bacula wishes to manipulate the autochanger. The
following substitutions are made in the command before it is sent to the operating system for execution:
 %% = %
 %a = archive device name
 %c = changer device name
 %d = changer drive index base 0
 %f = Client's name
 %j = Job name
 %o = command (loaded, load, or unload)
 %s = Slot base 0

Bacula Storage Management System

Device Configuration Records 252

 %S = Slot base 1
 %v = Volume name

An actual example for using mtx with the mtx−changer script (part of the Bacula distribution) is:

Changer Command = "/etc/bacula/mtx−changer %c %o %S %a %d"

Where you will need to adapt the /etc/bacula to be the actual path on your system where the
mtx−changer script resides. Details of the three commands currently used by Bacula (loaded, load,
unload) as well as the output expected by Bacula are give in the Bacula Autochanger Interface section
below.

Maximum Changer Wait = <time>
This record is used to define the maximum amount of time that Bacula will wait for an autoloader to
respond to a command (e.g. load). The default is set to 120 seconds. If you have a slow autoloader you
may want to set it longer.
If the autoloader program fails to respond in this time, it will be killed and Bacula will request operator
intervention.

Drive Index = <number>
This record allows you to tell Bacula to use the second or subsequent drive in an autochanger with
multiple drives. Since the drives are numbered from zero, the second drive is defined by
Device Index = 1

To use the second drive, you need a second Device resource definition in the Bacula configuration file. See the
Multiple Drive section above in this chapter for more information.

An Example Configuration File

The following Device resource implements an autochanger:

Device {
 Name = "Autochanger"
 Media Type = DDS−4
 Archive Device = /dev/nst0 # Normal archive device
 Changer Device = /dev/sg0 # Generic SCSI device name
 Changer Command = "/etc/bacula/mtx−changer %c %o %S %a %d"
 Autochanger = yes
 LabelMedia = no;
 AutomaticMount = yes;
 AlwaysOpen = yes;
 Mount Anonymous Volumes = no;
}

where you will adapt the Archive Device, the Changer Device, and the path to the Changer Command to
correspond to the values used on your system.

The above Device resource will work equally well for any standard tape drive (with device name /dev/nst0) since
the extra autochanger commands will not be used unless a slot has been specified in the catalog record for the
Volume to be used. See below for more details on the slot.

Bacula Storage Management System

An Example Configuration File 253

Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your Director's configuration file, the Bacula
Console will automatically prompt you for the slot number and whether or not the Volume is in the changer when
you add or label tapes for that Storage device. You must also set Autochanger = yes in the Device resource as
we have described above in order for the autochanger to be used. Please see the Storage Resource in the
Director's chapter and the Device Resource in the Storage daemon chapter for more details on these records.

Thus all stages of dealing with tapes can be totally automated. It is also possible to set or change the Slot using
the update command in the Console and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct, Bacula will attempt to access the
autochanger only if a slot is non−zero in the catalog Volume record (with the Volume name).

p>If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after another by
using the label barcodes command. For each tape in the changer containing a barcode, Bacula will mount the
tape and then label it with the same name as the barcode. An appropriate Media record will also be created in the
catalog. Any barcode that begins with the same characters as specified on the "CleaningPrefix=xxx" command,
will be treated as a cleaning tape, and will not be labeled. For example with:

Pool {
 Name ...
 Cleaning Prefix = "CLN"
}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.

Dealing with Multiple Magazines

If you have several magazines or if you insert or remove cartridges from a magazine, you will need to notify
Bacula of this. By doing so, Bacula will as a preference, use Volumes that it knows to be in the autochanger
before accessing Volumes that are not in the autochanger. This prevents unneeded operator intervention.

If your autochanger has barcodes (machine readable tape labels), the task of informing Bacula is simple. Every
time, you change a magazine, or add or remove a cartridge from the magazine, simply do

update slots

in the Console program. This will cause Bacula to request the autochanger to return the current Volume names in
the magazine. This will be done without actually accessing or reading the Volumes because the barcode reader
does this during inventory when the autochanger is first turned on. Bacula will ensure that any Volumes that are
currently marked as being in the magazine are marked as no longer in the magazine, and the new list of Volumes
will be marked as being in the magazine. In addition, the Slot numbers of the Volumes will be corrected in
Bacula's catalog if they are incorrect (added or moved).

If you do not have a barcode reader on your autochanger, you have several alternatives.

You can manually set the Slot and InChanger flag using the update volume command in the Console
(quite painful).

1.

You can issue a2.

Bacula Storage Management System

Specifying Slots When Labeling 254

update slots scan

command that will cause Bacula to read the label on each of the cartridges in the magazine in turn and
update the information (Slot, InChanger flag) in the catalog. This is quite effective but does take time to
load each cartridge into the drive in turn and read the Volume label.
You can modify the mtx−changer script so that it simulates an autochanger with barcodes. See below for
more details.

3.

Simulating Barcodes in your Autochanger

You can simulate barcodes in your autochanger by making the mtx−changer script return the same information
that an autochanger with barcodes would do. This is done by commenting out the one and only line in the list)
case, which is:

 ${MTX} −f $ctl status | grep " *Storage Element [0−9]*:.*Full" | awk "{print \$3 \$4}" | sed "s/Full *\(:VolumeTag=\)*//"

at approximately line 99 by putting a # in column one of that line, or by simply deleting it. Then in its place add a
new line that prints the contents of a file. For example:

cat /etc/bacula/changer.volumes

Be sure to include a full path to the file, which can have any name. The contents of the file must be of the
following format:

1:Volume1
2:Volume2
3:Volume3
...

Where the 1, 2, 3 are the slot numbers and Volume1, Volume2, ... are the Volume names in those slots. You can
have multiple files that represent the Volumes in different magazines, and when you change magazines, simply
copy the contents of the correct file into your /etc/bacula/changer.volumes file. There is no need to stop and
start Bacula when you change magazines, simply put the correct data in the file, then run the update slots
command, and your autochanger will appear to Bacula to be an autochanger with barcodes.

The Full Form of the Update Slots Command

If you change only one cartridge in the magazine, you may not want to scan all Volumes, so the update slots
command (as well as the update slots scan command) has the additional form:

update slots=n1,n2,n3−n4, ...

where the keyword scan can be appended or not. The n1,n2, ... represent Slot numbers to be updated and the
form n3−n4 represents a range of Slot numbers to be updates (e.g. 4−7 will update Slots 4,5,6, and 7).

This form is particularly useful if you want to do a scan (time expensive) and restrict the update to one or two
slots.

For example, the command:

Bacula Storage Management System

Simulating Barcodes in your Autochanger 255

update slots=1,6 scan

will cause Bacula to load the Volume in Slot 1, read its Volume label and update the Catalog. It will do the same
for the Volume in Slot 6. The command:

update slots=1−3,6

will read the barcoded Volume names for slots 1,2,3 and 6 and make the appropriate updates in the Catalog. If
you don't have a barcode reader or have not modified the mtx−changer script as described above, the above
command will not find any Volume names so will do nothing.

FreeBSD Issues

If you are having problems on FreeBSD when Bacula tries to select a tape, and the message is Device not
configured, this is because FreeBSD has made the tape device /dev/nsa1 disappear when there is no tape
mounted in the autochanger slot. As a consequence, Bacula is unable to open the device. The solution to the
problem is to make sure that some tape is loaded into the tape drive before starting Bacula. This problem is
correct in Bacula versions 1.32f−5 and later.

Please see the Tape Testing chapter of this manual for important information concerning your tape drive before
doing the autochanger testing.

Testing the Autochanger and Adapting Your mtx−changer Script

Before attempting to use the autochanger with Bacula, it is preferable to "hand−test" that the changer works. To
do so, we suggest you do the following commands (assuming that the mtx−changer script is installed in
/etc/bacula/mtx−changer):

Make sure Bacula is not running.
/etc/bacula/mtx−changer /dev/sg0 list 0 /dev/nst0 0

This command should print:
 1:
 2:
 3:
 ...

or one number per line for each slot that is occupied in your changer, and the number should be
terminated by a colon (:). If your changer has barcodes, the barcode will follow the colon. If an error
message is printed, you must resolve the problem (e.g. try a different SCSI control device name if
/dev/sg0 is incorrect. For example, on FreeBSD systems, the autochanger SCSI control device is
generally /dev/pass2.

/etc/bacula/mtx−changer /dev/sg0 slots 0 /dev/nst0 0
This command should return the number of slots in your autochanger.

/etc/bacula/mtx−changer /dev/sg0 unload
If a tape is loaded, this should cause it to be unloaded.

/etc/bacula/mtx−changer /dev/sg0 load 3 /dev/nst0 0
Assuming you have a tape in slot 3, it will be loaded into the read slot (0).

/etc/bacula/mtx−changer /dev/sg0 loaded 0 /dev/nst0 0
It should print "3"

/etc/bacula/mtx−changer /dev/sg0 unload

Bacula Storage Management System

FreeBSD Issues 256

Once all the above commands work correctly, assuming that you have the right Changer Command in your
configuration, Bacula should be able to operate the changer. The only remaining area of problems will be if your
autoloader needs some time to get the tape loaded after issuing the command. After the mtx−changer script
returns, Bacula will immediately rewind and read the tape. If Bacula gets rewind I/O errors after a tape change,
you will probably need to insert a sleep 20 after the mtx command, but be careful to exit the script with a zero
status by adding exit 0 after any additional commands you add to the script. This is because Bacula checks the
return status of the script, which should be zero if all went well.

You can test whether or not you need a sleep by putting the following commands into a file and running it as a
script:

#!/bin/sh
/etc/bacula/mtx−changer /dev/sg0 unload
/etc/bacula/mtx−changer /dev/sg0 load 3
mt −f /dev/st0 rewind
mt −f /dev/st0 weof

If the above script runs, you probably have no timing problems. If it does not run, start by putting a sleep 30 or
possibly a sleep 60 in the the script just after the mtx−changer load command. If that works, then you should
move the sleep into the actual mtx−changer script so that it will be effective when Bacula runs.

A second problem that comes up with a small number of autochangers is that they need to have the cartridge
ejected before it can be removed. If this is the case, the load 3 will never succeed regardless of how long you
wait. If this seems to be your problem, you can insert an eject just after the unload so that the script looks like:

#!/bin/sh
/etc/bacula/mtx−changer /dev/sg0 unload
mt −f /dev/st0 offline
/etc/bacula/mtx−changer /dev/sg0 load 3
mt −f /dev/st0 rewind
mt −f /dev/st0 weof

Obviously, if you need the offline command, you should move it into the mtx−changer script ensuring that you
save the status of the mtx command or always force an exit 0 from the script, because Bacula checks the return
status of the script.

As noted earlier, there are several scripts in <bacula−source>/examples/devices that implement the above
features, so they may be a help to you in getting your script to work.

If Bacula complains "Rewind error on /dev/nst0. ERR=Input/output error." you most likely need more sleep time
in your mtx−changer before returning to Bacula after a load command has been completed.

Using the Autochanger

Let's assume that you have properly defined the necessary Storage daemon Device records, and you have added
the Autochanger = yes record to the Storage resource in your Director's configuration file.

Now you fill your autochanger with say six blank tapes.

What do you do to make Bacula access those tapes?

Bacula Storage Management System

Using the Autochanger 257

One strategy is to prelabel each of the tapes. Do so by starting Bacula, then with the Console program, enter the
label command:

./console
Connecting to Director rufus:8101
1000 OK: rufus−dir Version: 1.26 (4 October 2002)
*label

it will then print something like:

Using default Catalog name=BackupDB DB=bacula
The defined Storage resources are:
 1: Autochanger
 2: File
Select Storage resource (1−2): 1

I select the autochanger (1), and it prints:

Enter new Volume name: TestVolume1
Enter slot (0 for none): 1

where I entered TestVolume1 for the tape name, and slot 1 for the slot. It then asks:

Defined Pools:
 1: Default
 2: File
Select the Pool (1−2): 1

I select the Default pool. This will be automatically done if you only have a single pool, then Bacula will proceed
to unload any loaded volume, load the volume in slot 1 and label it. In this example, nothing was in the drive, so
it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...
Sending label command ...
3903 Issuing autochanger "load slot 1" command.
3000 OK label. Volume=TestVolume1 Device=/dev/nst0
Media record for Volume=TestVolume1 successfully created.
Requesting mount Autochanger ...
3001 Device /dev/nst0 is mounted with Volume TestVolume1
You have messages.
*

You may then proceed to label the other volumes. The messages will change slightly because Bacula will unload
the volume (just labeled TestVolume1) before loading the next volume to be labeled.

Once all your Volumes are labeled, Bacula will automatically load them as they are needed.

To "see" how you have labeled your Volumes, simply enter the list volumes command from the Console
program, which should print something like the following:

*list volumes
Using default Catalog name=BackupDB DB=bacula
Defined Pools:
 1: Default
 2: File
Select the Pool (1−2): 1

Bacula Storage Management System

Using the Autochanger 258

+−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

| MedId | VolName | MedTyp | VolStat | Bites | LstWrt | VolReten | Recyc | Slot |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

| 1 | TestVol1 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 1 |

| 2 | TestVol2 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 2 |

| 3 | TestVol3 | DDS−4 | Append | 0 | 0 | 30672000 | 0 | 3 |

| ... |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−+

Barcode Support

Bacula provides barcode support with two Console commands, label barcodes and update slots.

The label barcodes will cause Bacula to read the barcodes of all the cassettes that are currently installed in the
magazine (cassette holder) using the mtx−changer list command. Each cassette is mounted in turn and labeled
with the same Volume name as the barcode.

The update slots command will first obtain the list of cassettes and their barcodes from mtx−changer. Then it
will find each volume in turn in the catalog database corresponding to to the barcodes and set its Slot to
correspond to the value just read. If the Volume is not in the catalog, then nothing will be done. This command is
useful for synchronizing Bacula with the current magazine in case you have changed magazines or in case you
have moved cassettes from one slot to another.

The Cleaning Prefix statement can be used in the Pool resource to define a Volume name prefix, which if it
matches that of the Volume (barcode) will cause that Volume to be marked with a VolStatus of Cleaning. This
will prevent Bacula from attempting to write on the Volume.

Bacula Autochanger Interface

Bacula calls the autochanger script that you specify on the Changer Device statement. Normally this script will
be the mtx−changer script that we can provide, but it can in fact be any program. The only requirements are that
the "commands" that Bacula uses are loaded, load, unload and list (slots may be used in the future). In addition,
each of those commands must return the information in the precise format as specified below:

− Currently the changer commands used are:
 loaded −− returns number of the slot that is loaded in
 the drive or 0 if the drive is empty.
 load −− loads a specified slot (note, some autochangers
 require a 30 second pause after this command) into
 the drive.
 unload −− unloads the device (returns cassette to its slot).
 list −− returns one line for each cassette in the autochanger
 in the format <slot>:<barcode>. Where
 the slot is the non−zero integer representing
 the slot number, and barcode is the barcode
 associated with the cassette if it exists and if you
 autoloader supports barcodes. Otherwise the barcode
 field is blank.

− Other changer commands defined but not yet used:
 slots −− returns total number of slots in the autochanger.

Bacula Storage Management System

Barcode Support 259

Bacula checks the exit status of the program called, and if it is zero, the data is accepted. If the exit status is
non−zero, Bacula ignores any information returned and treats the drive as if it is not an autochanger.

Data Spooling Index Tips and Suggestions

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Using Autochangers Index Utility Programs

Bacula Storage Management System

Barcode Support 260

http://www.bacula.org/

Tips and Suggestions

Examples

There are a number of example scripts for various things that can be found in the example subdirectory and its
subdirectories of the Bacula source distribution.

Upgrading Bacula Versions

The first thing to do before upgrading from one version to another is to ensure that don't overwrite your
production (current) version of Bacula until you have tested that the new version works.

If you have installed Bacula into a single directory, this is simple: simply make a copy of your Bacula directory.

If you have done a more typical Unix installation where the binaries are placed in one directory and the
configuration files are placed in another, then the simplest way is to configure your new Bacula to go into a
single file.

Whatever your situation may be (one of the two just described), you should probably start with the defaultconf
script that can be found in the examples subdirectory. Copy this script to the main Bacula directory, modify it as
necessary (there should not need to be many modifications), configure Bacula, build it, install it, then stop your
production Bacula, copy all the *.conf files from your production Bacula directory to the test Bacula directory,
start the test version, and run a few test backups. If all seems good, then you can proceed to install the new
Bacula in place of or possibly over the old Bacula.

When installing a new Bacula you need not worry about losing the changes you made to your configuration files
as the installation process will not overwrite them.

Getting Notified of Job Completion

One of the first things you should do is to ensure that you are being properly notified of the status of each Job run
by Bacula, or at a minimum of each Job that terminates with an error.

Until you are completely comfortable with Bacula, we recommend that you send an email to yourself for each
Job that is run. This is most easily accomplished by adding an email notification address in the Messages
resource of your Director's configuration file. An email is automatically configured in the default configuration
files, but you must ensure that the default root address is replaced by your email address.

For examples of how I (Kern) configure my system, please take a look at the .conf files found in the examples
sub−directory. We recommend the following configuration (where you change the paths and email address to
correspond to your setup). Note, the mailcommand and operatorcommand should be on a single line. They
were split here for presentation:

Messages {
 Name = Standard
 mailcommand = "/home/bacula/bin/bsmtp −h localhost
 −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/home/bacula/bin/bsmtp −h localhost
 −f \"\(Bacula\) %r\"

Tips and Suggestions 261

 −s \"Bacula: Intervention needed for %j\" %r"
 Mail = your−email−address = all, !skipped, !terminate
 append = "/home/bacula/bin/log" = all, !skipped, !terminate
 operator = your−email−address = mount
 console = all, !skipped, !saved
}

You will need to ensure that the /home/bacula/bin path on the mailcommand and the operatorcommand lines
points to your Bacula binary directory where the bsmtp program will be installed. You will also want to ensure
that the your−email−address is replaced by your email address, and finally, you will also need to ensure that the
/home/bacula/bin/log points to the file where you want to log all messages.

With the above Messages resource, you will be notified by email of every Job that ran, all the output will be
appended to the log file you specify, all output will be directed to the console program, and all mount messages
will be emailed to you. Note, some messages will be sent to multiple destinations.

The form of the mailcommand is a bit complicated, but it allows you to distinguish whether the Job terminated in
error or terminated normally. Please see the Mail Command section of the Messages Resource chapter of this
manual for the details of the substitution characters used above.

Once you are totally comfortable with Bacula as I am, or if you have a large number of nightly Jobs as I do
(eight), you will probably want to change the Mail command to Mail On Error which will generate an email
message only if the Job terminates in error. If the Job terminates normally, no email message will be sent, but the
output will still be appended to the log file as well as sent to the Console program.

Getting Email Notification to Work

The section above describes how to get email notification of job status. Occasionally, however, users have
problems receiving any email at all. In that case, the things to check are the following:

Ensure that you have a valid email address specified on your Mail record in the Director's Messages
resource. The email address should be fully qualified. Simply using root generally will not work, rather
you should use root@localhost or better yet your full domain.

•

Ensure that you do not have a Mail record in the Storage daemon's or File daemon's configuration files.
The only record you should have is director:

•

 director = director−name = all

If all else fails, try replacing the mailcommand with•

mailcommand = "mail −s test your@domain.com"

Once the above is working, assuming you want to use bsmtp, submit the desired bsmtp command by
hand and ensure that the email is delivered, then put that command into Bacula. Small differences in
things such as the parenthesis around the word Bacula can make a big difference to some bsmtp
programs. For example, you might start simply by using:

•

mailcommand = "/home/bacula/bin/bsmtp −f \"root@localhost\" %r"

Bacula Storage Management System

Getting Email Notification to Work 262

Getting Notified that Bacula is Running

If like me, you have setup Bacula so that email is sent only when a Job has errors, as described in the previous
section of this chapter, inevitably, one day, something will go wrong and Bacula can stall. This could be because
Bacula crashes, which is vary rare, or more likely the network has caused Bacula to hang for some unknown
reason.

To avoid this, you can use the RunAfterJob command in the Job resource to schedule a Job nightly, or weekly
that simply emails you a message saying that Bacula is still running. For example, I have setup the following Job
in my Director's configuration file:

Schedule {
 Name = "Watchdog"
 Run = Level=Full sun−sat at 6:05
}

Job {
 Name = "Watchdog"
 Type = Admin
 Client=Watchdog
 FileSet="Verify Set"
 Messages = Standard
 Storage = DLTDrive
 Pool = Default
 Schedule = "Watchdog"
 RunAfterJob = "/home/kern/bacula/bin/watchdog %c %d"
}

Client {
 Name = Watchdog
 Address = rufus
 FDPort = 9102
 Catalog = Verify
 Password = ""
 File Retention = 1day
 Job Retention = 1 month
 AutoPrune = yes
}

Where I established a schedule to run the Job nightly. The Job itself is type Admin which means that it doesn't
actually do anything, and I've defined a FileSet, Pool, Storage, and Client, all of which are not really used (and
probably don't need to be specified). The key aspect of this Job is the command:

 RunAfterJob = "/home/kern/bacula/bin/watchdog %c %d"

which runs my "watchdog" script. As an example, I have added the Job codes %c and %d which will cause the
Client name and the Director's name to be passed to the script. For example, if the Client's name is Watchdog
and the Director's name is main−dir then referencing $1 in the script would get Watchdog and referencing $2
would get main−dir. In this case, having the script know the Client and Director's name is not really useful, but
in other situations it may be.

You can put anything in the watchdog scrip. In my case, I like to monitor the size of my catalog to be sure that
Bacula is really pruning it. The following is my watchdog script:

#!/bin/sh

Bacula Storage Management System

Getting Notified that Bacula is Running 263

cd /home/kern/mysql/var/bacula
du . * |
/home/kern/bacula/bin/bsmtp \
 −f "\(Bacula\) abuse@whitehouse.com" −h mail.yyyy.com \
 −s "Bacula running" abuse@whitehouse.com

If you just wish to send yourself a message, you can do it with:

#!/bin/sh
cd /home/kern/mysql/var/bacula
/home/kern/bacula/bin/bsmtp \
 −f "\(Bacula\) abuse@whitehouse.com" −h mail.yyyy.com \
 −s "Bacula running" abuse@whitehouse.com <<END−OF−DATA
Bacula is still running!!!
END−OF−DATA

Maintaining a Valid Bootstrap File

By using a WriteBootstrap record in each of your Director's Job resources, you can constantly maintain a
bootstrap file that will enable you to recover the state of your system as of the last backup without having the
Bacula catalog. This permits you to more easily recover from a disaster that destroys your Bacula catalog.

When a Job resource has a WriteBootstrap record, Bacula will maintain the designated file (normally on another
system but mounted by NSF) with up to date information necessary to restore your system. For example, in my
Director's configuration file, I have the following record:

 Write Bootstrap = "/mnt/deuter/files/backup/client−name.bsr"

where I replace client−name by the actual name of the client that is being backed up. Thus, Bacula automatically
maintains one file for each of my clients. The necessary bootstrap information is appended to this file during each
Incremental backup, and the file is totally rewritten during each Full backup.

Note, one major disadvantage of writing to an NFS mounted volume as I do is that if the other machine goes
down, the OS will wait forever on the fopen() call that Bacula makes. As a consequence, Bacula will completely
stall until the machine exporting the NSF mounts comes back up. The solution to this problem was provided by
Andrew Hilborne, and consists of using the soft option instead of the hard option when mounting the NFS
volume, which is typically done in /etc/fstab/. The NFS documentation explains these options in detail.

If you are starting off in the middle of a cycle (i.e. with Incremental backups) rather than at the beginning (with a
Full backup), the bootstrap file will not be immediately valid as it must always have the information from a Full
backup as the first record. If you wish to synchronize your bootstrap file immediately, you can do so by running a
restore command for the client and selecting a full restore, but when the restore command asks for confirmation
to run the restore Job, you simply reply no, then copy the bootstrap file that was written to the location specified
on the Write Bootstrap record. The restore bootstrap file can be found in restore.bsr in the working directory
that you defined. In the example given below for the client rufus, my input is shown in bold. Note, the JobId
output has been partially truncated to fit on the page here:

(in the Console program)
*restore
First you select one or more JobIds that contain files
to be restored. You will then be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

Bacula Storage Management System

Maintaining a Valid Bootstrap File 264

To select the JobIds, you have the following choices:
 1: List last 20 Jobs run
 2: List Jobs where a given File is saved
 3: Enter list of JobIds to select
 4: Enter SQL list command
 5: Select the most recent backup for a client
 6: Cancel
Select item: (1−6): 5
The defined Client resources are:
 1: Minimatou
 2: Rufus
 3: Timmy
Select Client (File daemon) resource (1−3): 2
The defined FileSet resources are:
 1: Kerns Files
Item 1 selected automatically.

+−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+

| JobId | Levl | Files | StrtTim | VolName | File | SesId | VolSesTime |

+−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+

| 2 | F | 84 | ... | test1 | 0 | 1 | 1035645259 |

+−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−−−−−−+

You have selected the following JobId: 2
Building directory tree for JobId 2 ...

The defined Storage resources are:
 1: File
Item 1 selected automatically.

You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.

cwd is: /
$ done

84 files selected to restore.

Run Restore job
JobName: kernsrestore
Bootstrap: /home/kern/bacula/working/restore.bsr
Where: /tmp/bacula−restores
FileSet: Kerns Files
Client: Rufus
Storage: File
JobId: *None*
OK to run? (yes/mod/no): no
quit

(in a shell window)
cp ../working/restore.bsr /mnt/deuter/files/backup/rufus.bsr

Rejected Volumes After a Crash

Bacula keeps a count of the number of files on each Volume in its Catalog database so that before appending to a
tape, it can verify that the number of files are correct, and thus prevent overwriting valid data. If the Director or
the Storage daemon crashes before the job has completed, the tape will contain one more file than is noted in the
Catalog, and the next time you attempt to use the same Volume, Bacula will reject it due to a mismatch between

Bacula Storage Management System

Rejected Volumes After a Crash 265

the physical tape (Volume) and the catalog.

The easiest solution to this problem is to label a new tape and start fresh. If you wish to continue appending to the
current tape, you can do so by using the update command in the console program to change the Volume Files
entry in the catalog. A typical sequence of events would go like the following:

− Bacula crashes
− You restart Bacula

Bacula then prints:

17−Jan−2003 16:45 rufus−dir: Start Backup JobId 13,
 Job=kernsave.2003−01−17_16.45.46
17−Jan−2003 16:45 rufus−sd: Volume test01 previously written,
 moving to end of data.
17−Jan−2003 16:46 rufus−sd: kernsave.2003−01−17_16.45.46 Error:
 I cannot write on this volume because:
 The number of files mismatch! Volume=11 Catalog=10
17−Jan−2003 16:46 rufus−sd: Job kernsave.2003−01−17_16.45.46 waiting.
 Cannot find any appendable volumes.
Please use the "label" command to create a new Volume for:
 Storage: SDT−10000
 Media type: DDS−4
 Pool: Default

(note, lines wrapped for presentation)
The key here is the line that reads:

 The number of files mismatch! Volume=11 Catalog=10

It says that Bacula found eleven files on the volume, but that the catalog says there should be ten. When you see
this, you can be reasonably sure that the SD was interrupted while writing before it had a chance to update the
catalog. As a consequence, you can just modify the catalog count to eleven, and even if the catalog contains
references to files saved in file 11, everything will be OK and nothing will be lost. Note that if the SD had written
several file marks to the volume, the difference between the Volume cound and the Catalog count could be larger
than one, but this is unusual.

If on the other hand the catalog is marked as having more files than Bacula found on the tape, you need to
consider the possible negative consequences of modifying the catalog. Please see below for a more complete
discussion of this.

Continuing with the example of Volume = 11 Catalog = 10, to enable to Bacula to append to the tape, you do the
following:

update
Update choice:
 1: Volume parameters
 2: Pool from resource
 3: Slots from autochanger
Choose catalog item to update (1−3): 1
Defined Pools:
 1: Default
 2: File
Select the Pool (1−2):

Bacula Storage Management System

Rejected Volumes After a Crash 266

+−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−+

| MedId | VolName | MedTyp | VolStat | VolBytes | Last | VolReten | Recy | Slt |

+−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−+

| 1 | test01 | DDS−4 | Error | 352427156 | ... | 31536000 | 1 | 0 |

+−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−+

Enter MediaId or Volume name: 1

(note table output truncated for presentation) First, you chose to update the Volume parameters by entering a 1.
In the volume listing that follows, notice how the VolStatus is Error. We will correct that after changing the
Volume Files. Continuing, you respond 1,

Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration
 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−11): 9
Warning changing Volume Files can result
in loss of data on your Volume

Current Volume Files is: 10
Enter new number of Files for Volume: 11
New Volume Files is: 11
Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration
 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−10): 1

Here, you have selected 9 in order to update the Volume Files, then you changed it from 10 to 11, and you now
answer 1 to change the Volume Status.

Current Volume status is: Error
Possible Values are:
 1: Append
 2: Archive
 3: Disabled
 4: Full
 5: Used
 6: Read−Only
Choose new Volume Status (1−6): 1

Bacula Storage Management System

Rejected Volumes After a Crash 267

New Volume status is: Append
Updating Volume "test01"
Parameters to modify:
 1: Volume Status
 2: Volume Retention Period
 3: Volume Use Duration
 4: Maximum Volume Jobs
 5: Maximum Volume Files
 6: Maximum Volume Bytes
 7: Recycle Flag
 8: Slot
 9: Volume Files
 10: Pool
 11: Done
Select parameter to modify (1−11): 11
Selection done.

At this point, you have changed the Volume Files from 10 to 11 to account for the last file that was written but
not updated in the database, and you changed the Volume Status back to Append.

This was a lot of words to describe something quite simple.

The Volume Files option exists only in version 1.29 and later, and you should be careful using it. Generally, if
you set the value to that which Bacula said is on the tape, you will be OK, especially if the value is one more than
what is in the catalog.

Now lets consider the case:

 The number of files mismatch! Volume=10 Catalog=12

Here the Bacula found fewer files on the volume than what is marked in the catalog. Now, in this case, you
should hesitate lot before modifying the count in the catalog, because if you force the catalog from 12 to 10,
Bacula will start writing after the file 10 on the tape, possibly overwriting valid data, and if you ever try to restore
any of the files that the catalog has marked as saved on Files 11 and 12, all chaos will break out. In this case, you
will probably be better off using a new tape. In fact, you might want to see what files the catalog claims are
actually stored on that Volume, and back them up to another tape and recycle this tape.

Security Considerations

Only the File daemon needs to run with root permission (so that it can access all files). As a consequence, you
may run your Director, Storage daemon, and MySQL or PostgreSQL database server as non−root processes.
Version 1.30 has the −u and the −g options that allow you to specify a userid and groupid on the command line to
be used after Bacula starts.

As of version 1.33, thanks to Dan Langille, it is easier to configure the Bacula Director and Storage daemon to
run as non−root.

You should protect the Bacula port addresses (normally 9101, 9102, and 9103) from outside access by a firewall
or other means of protection to prevent unauthorized use of your daemons.

You should ensure that the configuration files are not world readable since they contain passwords that allow
access to the daemons. Anyone who can access the Director using a console program can restore any file from a
backup Volume.

Bacula Storage Management System

Security Considerations 268

You should protect your Catalog database. If you are using SQLite, make sure that the working directory is
readable only by root (or your Bacula userid), and ensure that bacula.db has permissions −rw−r−−r−− (i.e. 640)
or more strict. If you are using MySQL or PostgreSQL, please note that the Bacula setup procedure leaves the
database open to anyone. At a minimum, you should assign the user bacula a userid and add it to your Director's
configuration file in the appropriate Catalog resource.

Creating Holiday Schedules

If you normally change tapes every day or at least every Friday, but Thursday is a holiday, you can use a trick
proposed by Lutz Kittler to ensure that no job runs on Thursday so that you can insert Friday's tape and be sure it
will be used on Friday. To do so, define a RunJobBefore script that normally returns zero, so that the Bacula job
will normally continue. You can then modify the script to return non−zero on any day when you do not want
Bacula to run the job.

Automatic Labeling Using Your Autochanger

If you have an autochanger but it does not support barcodes, using a "trick" you can make Bacula automatically
label all the volumes in your autochanger's magazine.

First create a file containing one line for each slot in your autochanger that has a tape to be labeled. The line will
contain the slot number a colon (:) then the Volume name you want to use. For example, create a file named
volume−list, which contains:

1:Volume001
2:TestVolume02
5:LastVolume

The records do not need to be in any order and you don't need to mention all the slots. Normally, you will have a
consistent set of Volume names and a sequential set of numbers for each slot you want labeled. In the example
above, I've left out slots 3 and 4 just as an example. Now, modify your mtx−changer script and comment out all
the lines in the list) case by putting a # in column 1. Then add the following two lines:

 cat <absolute−path>/volume−list
 exit 0

so that the whole case looks like:

 list)
#
commented out lines
 cat <absolute−path>/volume−list
 exit 0
 ;;

where you replace <absolute−path> with the full path to the volume−list file. Then using the console, you enter
the following command:

 label barcodes

and Bacula will proceed to mount the autochanger Volumes in the list and label them with the Volume names
you have supplied. Bacula will think that the list was provided by the autochanger barcodes, but in reality, it was
you who supplied the <barcodes>.

Bacula Storage Management System

Creating Holiday Schedules 269

If it seems to work, when it finishes, enter:

 list volumes

and you should see all the volumes nicely created.

Backing Up Portables Using DHCP

You may want to backup laptops or portables that are not always connected to the network. If you are using
DHCP to assign an IP address to those machines when they connect, you will need to use the Dynamic Update
capability of DNS to assign a name to those machines that can be used in the Address field of the Client resource
in the Director's conf file.

Going on Vacation

At some point, you may want to be absent for a week or two and you want to make sure Bacula has enough tape
left so that the backups will complete. You start by doing a list volumes in the Console program:

list volumes

Using default Catalog name=BackupDB DB=bacula
Pool: Default
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−
| MediaId | VolumeName | MediaType | VolStatus | VolBytes |
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−
23	DLT−30Nov02	DLT8000	Full	54,739,278,128
24	DLT−21Dec02	DLT8000	Full	56,331,524,629
25	DLT−11Jan03	DLT8000	Full	67,863,514,895
26	DLT−02Feb03	DLT8000	Full	63,439,314,216
27	DLT−03Mar03	DLT8000	Full	66,022,754,598
28	DLT−04Apr03	DLT8000	Full	60,792,559,924
29	DLT−28Apr03	DLT8000	Full	62,072,494,063
30	DLT−17May03	DLT8000	Full	65,901,767,839
31	DLT−07Jun03	DLT8000	Used	56,558,490,015
32	DLT−28Jun03	DLT8000	Full	64,274,871,265
33	DLT−19Jul03	DLT8000	Full	64,648,749,480
34	DLT−08Aug03	DLT8000	Full	64,293,941,255
35	DLT−24Aug03	DLT8000	Append	9,999,216,782
+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−+

Note, I have truncated the output for presentation purposes. What is significant for is that I can see that my
current tape has almost 10 Gbytes of data, and that the average amount of data I get on my tapes is about 60
Gbytes. So if I go on vacation now, I don't need to worry about tape capacity (at least not for short absences).

Equally significant is the fact that I did go on vacation the 28th of June 2003, and when I did the list volumes
command, my current tape at that time, DLT−07Jun03 MediaId 31, had 56.5 Gbytes written. I could see that the
tape would fill shortly. Consequently, I manually marked it as Used and replaced it with a fresh tape that I
labeled as DLT−28Jun03, thus assuring myself that the backups would all complete without my intervention.

How to Excude File on Windows Regardless of Case

This tip was submitted by Marc Brueckner who wasn't sure of the case of some of his files on Win32, which is
case insensitive. The problem is that Bacula thinks that /UNIMPORTANT FILES is different from

Bacula Storage Management System

Backing Up Portables Using DHCP 270

/Unimportant Files. Marc was aware that the file exclusion permits wild−cards. So, he specified:

"/[Uu][Nn][Ii][Mm][Pp][Oo][Rr][Tt][Aa][Nn][Tt] [Ff][Ii][Ll][Ee][Ss]"

As a consequence, the above exclude works for files of any case.

Please note that this works only in Bacula Exclude statement and not in Include.

Executing Scripts on a Remote Machine

This tip also comes from Marc Brueckner. (Note, this tip is probably outdated by the addition of
ClientRunBeforJob and ClientRunAfterJob Job records, but the technique still could be useful.) First I thought
the "Run Before Job" statement in the Job−resource is for executing a script on the remote machine(the machine
to be backed up). It could be usefull to execute scripts on the remote machine e.g. for stopping databases or other
services while doing the backup. (Of cause I have to start the services again when the backup has finished) I
found the following solution: Bacula could execute scrips on the remote machine by using ssh. The
authentication is done automatically using a private key. First You have to generate a keypair. I ve done this by:

ssh−keygen −b 4096 −t dsa −f Bacula_key

This statement may take a little time to run. It creates a public/private key pair with no pass phrase. You could
save the keys in /etc/bacula. Now you have two new files : Bacula_key which contains the private key and
Bacula_key.pub which contains the public key.

Now you have to append the Bacula_key.pub file to the file authorized_keys in the \root\.ssh directory of the
remote machine. Then you have to add (or uncomment) the line

AuthorizedKeysFile %h/.ssh/authorized_keys

to the sshd_config file on the remote machine. Where the %h stands for the home−directory of the user (root in
this case).

Assuming that your sshd is already running on the remote machine, you can now enter the folloing on the
machine where Bacula runs:

ssh −i Bacula_key −l root "ls −la"

This should execute the "ls −la" command on the remote machine.

Now you could add lines like the following to your Director's conf file:

...
Run Before Job = ssh −i /etc/bacula/Bacula_key 192.168.1.1 \
 "/etc/init.d/database stop"
Run After Job = ssh −i /etc/bacula/Bacula_key 192.168.1.1 \
 "/etc/init.d/database start"
...

Even though Bacula version 1.32 has a ClientRunBeforeJob, the ssh method still could be useful for updating all
the Bacula clients on several remote machines in a single script.

Bacula Storage Management System

Executing Scripts on a Remote Machine 271

Recycling All Your Volumes

This tip comes from Phil Stracchino.

If you decide to blow away your catalog and start over, the simplest way to re−add all your prelabelled tapes with
the minimum of fuss (provided you don't care about the data on the tapes) is to add the tape labels using the
console add command, then go into the catalog and manually set the VolStatus of every tape to Recycle.

The SQL command to do this is very simple:

update Media set VolStatus = "Recycle";

Bacula will then ignore the data already stored on the tapes and just re−use each tape without further objection.

Backing up ACLs on ext3 or XFS filesystems

This tip comes from Volker Sauer.

Note, this tip was given prior to implementation of ACLs in Bacula (version 1.34.5). It is left here because
dumping/displaying ACLs can still be useful in testing/verifying that Bacula is backing up and restoring your
ACLs properly. Please see the aclsupport FileSet option in the configuration chapter of this manual.

For example, you could dump the ACLs to a file with a script similar to the following:

#!/bin/sh
BACKUP_DIRS="/foo /bar"
STORE_ACL=/root/acl−backup
umask 077
for i in $BACKUP_DIRS; do
 cd $i /usr/bin/getfacl −R −−skip−base .>$STORE_ACL/${i//\//_}
done

Then use Bacula to backup /root/acl−backup.

The ACLs could be restored using Bacula to the /root/acl−backup file, then restored to your system using:

setfacl −−restore/root/acl−backup

Total Automation of Bacula Tape Handling

This tip was provided by Alexander Kuehn.

Bacula is a really nice backup program except that the manual tape changing requires user interaction with the
bacula console.

Fortunately I can fix this.
Bacula supports a variety of tape changers through the use of mtx−changer scripts/programs. This highly flexible
approach allowed me to create this shell script which does the following:
Whenever a new tape is required it sends a mail to the operator to insert the new tape. Then it wait's until a tape
has been inserted, sends a mail again to say thank you and let's bacula continue it's backup.
So you can schedule and run backups without ever having to log on or see the console.

Bacula Storage Management System

Recycling All Your Volumes 272

http://www.bacula.org/

To make the whole thing work you need to create a Device resource which looks something like this ("Archive
Device", "Maximum Changer Wait", "Media Type" and "Label media" may have different values):

Device {
 Name=DDS3
 Archive Device = # use yours not mine! ;)/dev/nsa0
 Changer Device = # not really required/dev/nsa0
 Changer Command = "# use this (maybe change the path)!
 /usr/local/bin/mtx−changer %o %a %S"
 Maximum Changer Wait = 3d # 3 days in seconds
 AutomaticMount = yes; # mount on start
 AlwaysOpen = yes; # keep device locked
 Media Type = DDS3 # it's just a name
 RemovableMedia = yes; #
 Offline On Unmount = Yes; # keep this too
 Label media = Yes; #
}

As the script has to emulate the complete wisdom of a mtx−changer it has an internal "database" where which
tape is stored, you can see this at that line:

labels="VOL−0001 VOL−0002 VOL−0003 VOL−0004 VOL−0005 VOL−0006
VOL−0007 VOL−0008 VOL−0009 VOL−0010 VOL−0011 VOL−0012"

The above should be all on one line, and it effectivly tells Bacula that volume "VOL−0001" is located in slot 1
(which is our lowest slot), that volume "VOL−0002" is located in slot 2 and so on..
The script also maintains a logfile (/var/log/mtx.log) where you can monitor its operation.

Running Concurrent Jobs

Bacula can run multiple concurrent jobs, but the default configuration files are not set to do so. Using the
Maximum Concurrent Jobs directive, you have a lot of control over how many jobs can run at the same time,
and which jobs can run simultaneously. The downside is that it can be a bit tricky to set it up for the first time as
you need to set the concurrency in at least five different places.

The Director, the File daemon, and the Storage daemon each have a Maximum Concurrent Jobs directive that
determines overall number of concurrent jobs the daemon will run. The default is one for the Director and ten for
both the File daemon and the Storage daemon, so assuming you will not be running more than ten concurrent
jobs, the only changes that are needed are in the Director's conf file (bacula−dir.conf).

Within the Director's configuration file, Maximum Concurrent Jobs can be set in the Direct, Job, Client, and
Storage resources. Each one must be set properly, according to your needs, otherwise your jobs may be run one at
a time.

For example, if you want two different jobs to run simultaneously backing up the same Client to the same
Storage device, they will run concurrentl only if you have set Maximum Concurrent Jobs greater than one in
the Director resource, the Client resource, and the Storage resource in bacula−dir.conf.

We recommend that you carefully test your multiple concurrent backup including doing thorough restore testing
before you put it into production.

Bacula Storage Management System

Running Concurrent Jobs 273

Below is a super stripped down bacula−dir.conf file showing you the four places where the the file has been
modified to allow the same job NightlySave to run up to four times concurrently. The change to the Job resource
is not necessary if you want different Jobs to run at the same time, which is the normal case.

#
Bacula Director Configuration file −− bacula−dir.conf
#
Director {
 Name = rufus−dir
 Maximum Concurrent Jobs = 4
 ...
}

Job {
 Name = "NightlySave"
 Maximum Concurrent Jobs = 4
 Client = rufus−fd
 Storage = File
 ...
}

Client {
 Name = rufus−fd
 Maximum Concurrent Jobs = 4
 ...
}

Storage {
 Name = File
 Maximum Concurrent Jobs = 4
 ...
}

Using Autochangers Index Utility Programs

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Tips and Suggestions Index Tape Testing

Bacula Storage Management System

Running Concurrent Jobs 274

http://www.bacula.org/

Volume Utility Tools
This document describes the utility programs written to aid Bacula users and developers in dealing with Volumes
external to Bacula.

Specifying the Configuration File

Starting with version 1.27, each of the following programs requires a valid Storage daemon configuration file
(actually, the only part of the configuration file that these programs need is the Device resource definitions). This
permits the programs to find the configuration parameters for your archive device (generally a tape drive). By
default, they read bacula−sd.conf in the current directory, but you may specify a different configuration file
using the −c option.

Specifying a Device Name For a Tape

Each of these programs require a device−name where the Volume can be found. In the case of a tape, this is the
physical device name such as /dev/nst0 or /dev/rmt/0ubn depending on your system. For the program to work, it
must find the identical name in the Device resource of the configuration file. See below for specifying Volume
names.

Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the device−name should be the full path
to the archive location including the filename. The filename (last part of the specification) will be stripped and
used as the Volume name, and the path (first part before the filename) must have the same entry in the
configuration file. So, the path is equivalent to the archive device name, and the filename is equivalent to the
volume name.

Specifying Volumes

In general, you must specify the Volume name to each of the programs below (with the exception of btape). The
best method to do so is to specify a bootstrap file on the command line with the −b option. As part of the
bootstrap file, you will then specify the Volume name or Volume names if more than one volume is needed. For
example, suppose you want to read tapes tape1 and tape2. First construct a bootstrap file named say, list.bsr
which contains:

Volume=test1|test2

where each Volume is separated by a vertical bar. Then simply use:

./bls −b list.bsr /dev/nst0

In the case of Bacula Volumes that are on files, you may simply append volumes as follows:

./bls /tmp/test1\|test2

where the backslash (\) was necessary as a shell escape to permit entering the vertical bar (|).

And finally, if you feel that specifying a Volume name is a bit complicated with a bootstrap file, you can use the
−V option (on all programs except bcopy) to specify one or more Volume names separated by the vertical bar (|).

Volume Utility Tools 275

For example,

./bls −V Vol001 /dev/nst0

You may also specify an asterisk (*) to indicate that the program should accept any volume. For example:

./bls −V* /dev/nst0

Bacula Storage Management System

Volume Utility Tools 276

bls
bls can be used to do an ls type listing of a Bacula tape or file. It is called:

Usage: bls [−d debug_level] <device−name>
 −b <file> specify a bootstrap file
 −c <file> specify a configuration file
 −d <level> specify a debug level
 −e <file> exclude list
 −i <file> include list
 −j list jobs
 −k list blocks
 −L list tape label
 (none of above) list saved files
 −p proceed inspite of I/O errors
 −t use default tape device
 −v be verbose
 −V specify Volume names (separated by |)
 −? print this message

For example, to list the contents of a tape:

./bls −V Volume−name /dev/nst0

Or to list the contents of a file:

./bls /tmp/Volume−name
or
./bls −V Volume−name /tmp

Note that, in the case of a file, the Volume name becomes the filename, so in the above example, you will replace
the xxx with the name of the volume (file) you wrote.

Normally if no options are specified, bls will produce the equivalent output to the ls −l command for each file on
the tape. Using other options listed above, it is possible to display only the Job records, only the tape blocks, etc.
For example:

./bls /tmp/File002

bls: butil.c:148 Using device: /tmp

drwxrwxr−x 3 k k 4096 02−10−19 21:08 /home/kern/bacula/k/src/dird/

drwxrwxr−x 2 k k 4096 02−10−10 18:59 /home/kern/bacula/k/src/dird/CVS/

−rw−rw−r−− 1 k k 54 02−07−06 18:02 /home/kern/bacula/k/src/dird/CVS/Root

−rw−rw−r−− 1 k k 16 02−07−06 18:02 /home/kern/bacula/k/src/dird/CVS/Repository

−rw−rw−r−− 1 k k 1783 02−10−10 18:59 /home/kern/bacula/k/src/dird/CVS/Entries

−rw−rw−r−− 1 k k 97506 02−10−18 21:07 /home/kern/bacula/k/src/dird/Makefile

−rw−r−−r−− 1 k k 3513 02−10−18 21:02 /home/kern/bacula/k/src/dird/Makefile.in

−rw−rw−r−− 1 k k 4669 02−07−06 18:02 /home/kern/bacula/k/src/dird/README−config

−rw−r−−r−− 1 k k 4391 02−09−14 16:51 /home/kern/bacula/k/src/dird/authenticate.c

−rw−r−−r−− 1 k k 3609 02−07−07 16:41 /home/kern/bacula/k/src/dird/autoprune.c

−rw−rw−r−− 1 k k 4418 02−10−18 21:03 /home/kern/bacula/k/src/dird/bacula−dir.conf

...

−rw−rw−r−− 1 k k 83 02−08−31 19:19 /home/kern/bacula/k/src/dird/.cvsignore

bls: Got EOF on device /tmp

84 files found.

bls 277

Listing Bacula Jobs

If you are listing a Volume to determine what Jobs to restore, normally the −j option provides you with most of
what you will need as long as you don't have multiple clients. For example,

./bls −j /tmp/test1
Volume Record: SessId=2 SessTime=1033762386 JobId=0 DataLen=144
Begin Session Record: SessId=2 SessTime=1033762386 JobId=1 Level=F Type=B
End Session Record: SessId=2 SessTime=1033762386 JobId=1 Level=F Type=B
Begin Session Record: SessId=3 SessTime=1033762386 JobId=2 Level=I Type=B
End Session Record: SessId=3 SessTime=1033762386 JobId=2 Level=I Type=B
Begin Session Record: SessId=4 SessTime=1033762386 JobId=3 Level=I Type=B
End Session Record: SessId=4 SessTime=1033762386 JobId=3 Level=I Type=B
bls: Got EOF on device /tmp

shows a full save followed by two incremental saves.

Adding the −v option will display virtually all information that is available for each record:

Listing Bacula Blocks

Normally, except for debugging purposes, you will not need to list Bacula blocks (the "primitive" unit of Bacula
data on the Volume). However, you can do so with:

./bls −k /tmp/File002
bls: butil.c:148 Using device: /tmp
Block: 1 size=64512
Block: 2 size=64512
...
Block: 65 size=64512
Block: 66 size=19195
bls: Got EOF on device /tmp
End of File on device

By adding the −v option, you can get more information, which can be useful in knowing what sessions were
written to the volume:

./bls −k −v /tmp/File002

Volume Label:
Id : Bacula 0.9 mortal
VerNo : 10
VolName : File002
PrevVolName :
VolFile : 0
LabelType : VOL_LABEL
LabelSize : 147
PoolName : Default
MediaType : File
PoolType : Backup
HostName :
Date label written: 2002−10−19 at 21:16

Block: 1 blen=64512 First rec FI=VOL_LABEL SessId=1 SessTim=1035062102 Strm=0 rlen=147

Block: 2 blen=64512 First rec FI=6 SessId=1 SessTim=1035062102 Strm=DATA rlen=4087

Block: 3 blen=64512 First rec FI=12 SessId=1 SessTim=1035062102 Strm=DATA rlen=5902

Block: 4 blen=64512 First rec FI=19 SessId=1 SessTim=1035062102 Strm=DATA rlen=28382

Bacula Storage Management System

Listing Bacula Jobs 278

...

Block: 65 blen=64512 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=1873

Block: 66 blen=19195 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=2973

bls: Got EOF on device /tmp

End of File on device

Armed with the SessionId and the SessionTime, you can extract just about anything.

If you want to know even more, add a second −v to the command line to get a dump of every record in every
block.

./bls −k −v −v /tmp/File002
bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=1
 Hdrcksum=b1bdfd6d cksum=b1bdfd6d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=VOL_LABEL Strm=0 len=147 p=80f8b40
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=SOS_LABEL Strm=−7 len=122 p=80f8be7
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=1 Strm=UATTR len=86 p=80f8c75
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=2 Strm=UATTR len=90 p=80f8cdf
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=UATTR len=92 p=80f8d4d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=DATA len=54 p=80f8dbd
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=MD5 len=16 p=80f8e07
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=UATTR len=98 p=80f8e2b
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=DATA len=16 p=80f8ea1
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=MD5 len=16 p=80f8ec5
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=UATTR len=96 p=80f8ee9
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=DATA len=1783 p=80f8f5d
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=MD5 len=16 p=80f9668
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=UATTR len=95 p=80f968c
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=80f96ff
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=8101713
bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=2
 Hdrcksum=9acc1e7f cksum=9acc1e7f
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=contDATA len=4087 p=80f8b40
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=31970 p=80f9b4b
bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=MD5 len=16 p=8101841
...

Bacula Storage Management System

Listing Bacula Jobs 279

bextract
Normally, you will restore files by running a Restore Job from the Console program. However, bextract can be
used to extract a single file or a list of files from a Bacula tape or file. In fact, bextract can be a useful tool to
restore files to an empty system assuming you are able to boot, you have statically linked bextract and you have
an appropriate bootstrap file.

It is called:

Usage: bextract [−d debug_level] <device−name> <directory−to−store−files>
 −b <file> specify a bootstrap file
 −dnn set debug level to nn
 −e <file> exclude list
 −i <file> include list
 −p proceed inspite of I/O errors
 −V specify Volume names (separated by |)
 −? print this message

where device−name is the Archive Device (raw device name or full filename) of the device to be read, and
directory−to−store−files is a path prefix to prepend to all the files restored.

NOTE: On Windows systems, if you specify a prefix of say d:/tmp, any file that would have been restored to
c:/My Documents will be restored to d:/tmp/My Documents. That is, the original drive specification will be
stripped. If no prefix is specified, the file will be restored to the original drive.

Extracting with Include or Exclude Lists

Using the −e option, you can specify a file containing a list of files to be excluded. Wildcards can be used in the
exclusion list. This option will normally be used in conjunction with the −i option (see below). Both the −e and
the −i options may be specified at the same time as the −b option. The bootstrap filters will be applied first, then
the include list, then the exclude list.

Likewise, and probably more importantly, with the −i option, you can specify a file that contains a list (one file
per line) of files and directories to include to be restored. The list must contain the full filename with the path. If
you specify a path name only, all files and subdirectories of that path will be restored. If you specify a line
containing only the filename (e.g. my−file.txt) it probably will not be extracted because you have not specified
the full path.

For example, if the file include−list contains:

/home/kern/bacula
/usr/local/bin

Then the command:

./bextract −i include−list −V Volume /dev/nst0 /tmp

will restore from the Bacula archive /dev/nst0 all files and directories in the backup from /home/kern/bacula
and from /usr/local/bin. The restored files will be placed in a file of the original name under the directory /tmp
(i.e. /tmp/home/kern/bacula/... and /tmp/usr/local/bin/...).

bextract 280

Extracting With a Bootstrap File

The −b option is used to specify a bootstrap file containing the information needed to restore precisely the files
you want. Specifying a bootstrap file is optional but recommended because it gives you the most control over
which files will be restored. For more details on the bootstrap file, please see Restoring Files with the Bootstrap
File chapter of this document. Note, you may also use a bootstrap file produced by the restore command. For
example:

./bextract −b bootstrap−file /dev/nst0 /tmp

The bootstrap file allows detailed specification of what files you want restored (extracted). You may specify a
bootstrap file and include and/or exclude files at the same time. The bootstrap conditions will first be applied, and
then each file record seen will be compared to the include and exclude lists.

Extracting From Multiple Volumes

If you wish to extract files that span several Volumes, you can specify the Volume names in the bootstrap file or
you may specify the Volume names on the command line by separating them with a vertical bar. See the section
above under the bls program entitled Listing Multiple Volumes for more information. The same techniques
apply equally well to the bextract program.

Bacula Storage Management System

Extracting With a Bootstrap File 281

bscan
The bscan program can be used to re−create a database (catalog) from the backup information written to one or
more Volumes. This is normally needed only if one or more Volumes have been pruned or purged from your
catalog so that the records on the Volume are no longer in the catalog.

With some care, it can also be used to synchronize your existing catalog with a Volume. Since bscan modifies
your catalog, we strongly recommend that you do a simple ASCII backup of your database before running bscan
just to be sure. See Compacting Your Database.

bscan can also be useful in a disaster recovery situation, after the loss of a hard disk, if you do not have a valid
bootstrap file for reloading your system, or if a Volume has been recycled but not overwritten, you can use
bscan to re−create your database, which can then be used to restore your system or a file to its previous state.

It is called:

Usage: bscan [options] <bacula−archive>
 −b bootstrap specify a bootstrap file
 −c <file> specify configuration file
 −d <nn> set debug level to nn
 −m update media info in database
 −n <name> specify the database name (default bacula)
 −u <user> specify database user name (default bacula)
 −P <password> specify database password (default none)
 −h <host> specify database host (default NULL)
 −p proceed inspite of I/O errors
 −r list records
 −s synchronize or store in database
 −v verbose
 −V <Volumes> specify Volume names (separated by |)
 −w <dir> specify working directory (default from conf file)
 −? print this message

If you are using MySQL or PostgreSQL, there is no need to supply a working directory since in that case, bscan
knows where the databases are. However, if you have provided security on your database, you may need to
supply either the database name (−b option), the user name (−u option), and/or the password (−p) options.

As an example, let's suppose that you did a backup to Volume "Vol001" and that sometime later all record of that
Volume was pruned or purged from the database. By using bscan you can recreate the catalog entries for that
Volume and then use the restore command in the Console to restore whatever you want. A command something
like:

bscan −c bacula−sd.conf −v −V Vol001 /dev/nst0

will give you a give you an idea of what is going to happen without changing your catalog. Of course, you may
need to change the path to the Storage daemon's conf file, the Volume name, and your tape (or disk) device
name. This command must read the entire tape, so if it has a lot of data, it may take a long time, and thus you
might want to immediately use the command listed below. Note, if you are writing to a disk file, replace the
device name with the path to the directory that contains the Volume. This must correspond to the Archive Device
in the conf file.

Then to actually write or store the records in the catalog, add the −s option as follows:

bscan 282

 bscan −s −m −c bacula−sd.conf −v −V Vol001 /dev/nst0

When writing to the database, if bscan finds existing records, it will generally either update them if something is
wrong or leave them alone. Thus if the Volume you are scanning is all or partially in the catalog already, no harm
will be done to that existing data. Any missing data will simply be added.

If you have multiple tapes, you can scan them with:

 bscan −s −m −c bacula−sd.conf −v −V Vol001\|Vol002\|Vol003 /dev/nst0

You should, where ever possible try to specify the tapes in the order they are written. However, bscan can handle
scanning tapes that are not sequential. Any incomplete records at the end of the tape will simply be ignored in
that case.

Note, the restoration process using bscan is not identical to the original creation of the catalog data. This is
because certain non−essential data such as volume reads, volume mounts, etc is not stored on the Volume, and
thus is not restored by bscan. The results of bscanning are, however, perfectly valid, and will permit restoration
of any or all the files in the catalog using the normal Bacula console commands.

Using bscan to Compare a Volume to an existing Catalog

If you wish to compare the contents of a Volume to an existing catalog without changing the catalog, you can
safely do so if and only if you do not specify either the −m or the −s options. However, at this time (Bacula
version 1.26), the comparison routines are not as good or as thorough as they should be, so we don't particularly
recommend this mode other than for testing.

Using bscan to Recreate a Catalog from a Volume

This is the mode for which bscan is most useful. You can either bscan into a freshly created catalog, or directly
into your existing catalog (after having made an ASCII copy as described above). Normally, you should start
with a freshly created catalog that contains no data.

Starting with a single Volume named TestVolume1, you run a command such as:

./bscan −V TestVolume1 −v −s −m −c bacula−sd.conf /dev/nst0

If there is more than one volume, simply append it to the first one separating it with a vertical bar. You may need
to precede the vertical bar with a forward slash escape the shell −− e.g. TestVolume1\|TestVolume2. The −v
option was added for verbose output (this can be omitted if desired). The −s option that tells bscan to store
information in the database. The physical device name /dev/nst0 is specified after all the options.

For example, after having done a full backup of a directory, then two incrementals, I reinitialized the SQLite
database as described above, and using the bootstrap.bsr file noted above, I entered the following command:

./bscan −b bootstrap.bsr −v −s −c bacula−sd.conf /dev/nst0

which produced the following output:

bscan: bscan.c:182 Using Database: bacula, User: bacula
bscan: bscan.c:673 Created Pool record for Pool: Default
bscan: bscan.c:271 Pool type "Backup" is OK.
bscan: bscan.c:632 Created Media record for Volume: TestVolume1

Bacula Storage Management System

Using bscan to Compare a Volume to an existing Catalog 283

bscan: bscan.c:298 Media type "DDS−4" is OK.
bscan: bscan.c:307 VOL_LABEL: OK for Volume: TestVolume1
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=1 record for original JobId=2
bscan: bscan.c:717 Created FileSet record "Kerns Files"
bscan: bscan.c:819 Updated Job termination record for new JobId=1
bscan: bscan.c:905 Created JobMedia record JobId 1, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=2 record for original JobId=3
bscan: bscan.c:708 Fileset "Kerns Files" already exists.
bscan: bscan.c:819 Updated Job termination record for new JobId=2
bscan: bscan.c:905 Created JobMedia record JobId 2, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:693 Created Client record for Client: Rufus
bscan: bscan.c:769 Created new JobId=3 record for original JobId=4
bscan: bscan.c:708 Fileset "Kerns Files" already exists.
bscan: bscan.c:819 Updated Job termination record for new JobId=3
bscan: bscan.c:905 Created JobMedia record JobId 3, MediaId 1
bscan: Got EOF on device /dev/nst0
bscan: bscan.c:652 Updated Media record at end of Volume: TestVolume1
bscan: bscan.c:428 End of Volume. VolFiles=3 VolBlocks=57 VolBytes=10,027,437

The key points to note are that bscan prints a line when each major record is created. Due to the volume of
output, it does not print a line for each file record unless you supply the −v option twice or more on the command
line.

In the case of a Job record, the new JobId will not normally be the same as the original Jobid. For example, for
the first JobId above, the new JobId is 1, but the original JobId is 2. This is nothing to be concerned about as it is
the normal nature of databases. bscan will keep everything straight.

Although bscan claims that it created a Client record for Client: Rufus three times, it was actually only created
the first time. This is normal.

You will also notice that it read an end of file after each Job (Got EOF on device ...). Finally the last line gives
the total statistics for the bscan.

If you had added a second −v option to the command line, Bacula would have been even more verbose, dumping
virtually all the details of each Job record it encountered.

Now if you start Bacula and enter a list jobs command to the console program, you will get:

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

| JobId | Name | StartTime | Type | Lvl | JobFiles | JobBytes | JobStat |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

| 1 | kernsave | 2002−10−07 14:59 | B | F | 84 | 4180207 | T |

| 2 | kernsave | 2002−10−07 15:00 | B | I | 15 | 2170314 | T |

| 3 | kernsave | 2002−10−07 15:01 | B | I | 33 | 3662184 | T |

+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−+

which corresponds virtually identically with what the database contained before it was re−initialized and restored
with bscan. All the Jobs and Files found on the tape are restored including most of the Media record. The Volume
(Media) records restored will be marked as Full so that they cannot be rewritten without operator intervention.

Bacula Storage Management System

Using bscan to Compare a Volume to an existing Catalog 284

It should be noted that bscan cannot restore a database to the exact condition it was in previously because a lot of
the less important information contained in the database is not saved to the tape. Nevertheless, the reconstruction
is sufficiently complete, that you can run restore against it and get valid results.

Using bscan to Correct the Volume File Count

If the Storage daemon crashes during a backup Job, the catalog will no be properly updated for the Volume being
used at the time of the crash. This means that the Storage daemon will have written say 20 files on the tape, but
the catalog record for the Volume indicates only 19 files.

Bacula refuses to write on a tape that contains a different number of files from what is in the catalog. To correct
this situation, you may run a bscan with the −m option (but without the −s option) to update only the final
Media record for the Volumes read.

After bscan

If you use bscan to enter the contents of the Volume into an existing catalog, you should be aware that the
records you entered may be immediately pruned during the next job particularly if the Volume is very old or had
been previously purged. To avoid this, after running bscan, you can manually set the volume status (VolStatus)
to Read−Only by using the update command in the catalog. This will allow you to restore from the volume
without having it immediately purged. When you have restored and backed up the data, you can reset the
VolStatus to Used and the Volume will be purged from the catalog.

Bacula Storage Management System

Using bscan to Correct the Volume File Count 285

bcopy
The bcopy program can be used to copy one Bacula archive file to another. For example, you may copy a tape to
a file, a file to a tape, a file to a file, or a tape to a tape. For tape to tape, you will need two tape drives. (a later
version is planned that will buffer it to disk). In the process of making the copy, no record of the information
written to the new Volume is stored in the catalog. This means that the new Volume, though it contains valid
backup data, cannot be accessed directly from existing catalog entries. If you wish to be able to use the Volume
with the Console restore command, for example, you must first bscan the new Volume into the catalog.

bcopy Command Options

Usage: bcopy [−d debug_level] <input−archive> <output−archive>
 −b bootstrap specify a bootstrap file
 −c <file> specify configuration file
 −dnn set debug level to nn
 −i specify input Volume names (separated by |)
 −o specify output Volume names (separated by |)
 −p proceed inspite of I/O errors
 −v verbose
 −w dir specify working directory (default /tmp)
 −? print this message

By using a bootstrap file, you can copy parts of a Bacula archive file to another archive.

One of the objectives of this program is to be able to recover as much data as possible from a damaged tape.
However, the current version does not yet have this feature.

As this is a new program, any feedback on its use would be appreciated. In addition, I only have a single tape
drive, so I have never been able to test this program with two tape drives.

bcopy 286

btape
This program permits a number of elementary tape operations via a tty command interface. The test command,
described below, can be very useful for testing older tape drive compatibility problems. Aside from initial testing
of tape drive compatibility with Bacula, btape will be mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will relabel a tape or write on the tape if so
requested regardless that the tape may contain valuable data, so please be careful and use it only on blank tapes.

To work properly, btape needs to read the Storage daemon's configuration file. As a default, it will look for
bacula−sd.conf in the current directory. If your configuration file is elsewhere, please use the −c option to
specify where.

The physical device name must be specified on the command line, and that this same device name must be
present in the Storage daemon's configuration file read by btape

Usage: btape [−c config_file] [−d debug_level] [device_name]
 −c <file> set configuration file to file
 −dnn set debug level to nn
 −s turn off signals
 −t open the default tape device
 −? print this message.

Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon configuration file is defined so that
Bacula will correctly read and write tapes.

It is highly recommended that you run the test command before running your first Bacula job to ensure that the
parameters you have defined for your storage device (tape drive) will permit Bacula to function properly. You
only need to mount a blank tape, enter the command, and the output should be reasonably self explanatory.
Please see the Tape Testing Chapter of this manual for the details.

btape Commands

The full list of commands are:

 Command Description
 ======= ===========
 bsf backspace file
 bsr backspace record
 cap list device capabilities
 clear clear tape errors
 eod go to end of Bacula data for append
 test General test Bacula tape functions
 eom go to the physical end of medium
 fill fill tape, write onto second volume
 unfill read filled tape
 fsf forward space a file
 fsr forward space a record
 help print this command
 label write a Bacula label to the tape
 load load a tape

btape 287

 quit quit btape
 rd read tape
 readlabel read and print the Bacula tape label
 rectest test record handling functions
 rewind rewind the tape
 scan read tape block by block to EOT and report
 status print tape status
 test test a tape for compatibility with Bacula
 weof write an EOF on the tape
 wr write a single record of 2048 bytes

The most useful commands are:

test −− test writing records and EOF marks and reading them back.•
fill −− completely fill a volume with records, then write a few records on a second volume, and finally,
both volumes will be read back. Please be aware that the data written will be quite similar every record,
so you might want to turn compression off. One user found that the fill command wrote 750Gb to a tape
that can hold 35Gb −− so you can see that the hardware compression really worked well!

•

readlabel −− read and dump the label on a Bacula tape.•
cap −− list the device capabilities as defined in the configuration file and as perceived by the Storage
daemon.

•

The readlabel command can be used to display the details of a Bacula tape label. This can be useful if the
physical tape label was lost or damaged.

In the event that you want to relabel a Bacula, you can simply use the label command which will write over any
existing label. However, please note for labeling tapes, we recommend that you use the label command in the
Console program since it will never overwrite a valid Bacula tape.

Bacula Storage Management System

btape 288

Other Programs
The following programs are general utility programs and in general do not need a configuration file nor a device
name.

Other Programs 289

bsmtp
bsmtp is a simple mail transport program that permits more flexibility than the standard mail programs typically
found on Unix systems. It can even be used on Windows machines.

It is called:

Usage: bsmtp [−f from] [−h mailhost] [−s subject] [−c copy] [recipient ...]
 −c set the Cc: field
 −dnn set debug level to nn
 −f set the From: field
 −h use mailhost:port as the bsmtp server
 −s set the Subject: field
 −? print this message.

If the −f option is not specified, bsmtp will use your userid. If the option is not specified bsmtp will use the
value in the environment variable bsmtpSERVER or if there is none localhost. By default port 25 is used.

recipients is a space separated list of email recipients.

The body of the email message is read from standard input.

An example of the use of bsmtp would be to put the following statement in the Messages resource of your
bacula−dir.conf file. Note, these commands should appear on a single line each.

 mailcommand = "/home/bacula/bin/bsmtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: %t %e of %c %l\" %r"
 operatorcommand = "/home/bacula/bin/bsmtp −h mail.domain.com −f \"\(Bacula\) %r\"
 −s \"Bacula: Intervention needed for %j\" %r"

Where you replace /home/bacula/bin with the path to your Bacula binary directory, and you replace
mail.domain.com with the fully qualified name of your bsmtp (email) server, which normally listens on port 25.
For more details on the substitution characters (e.g. %r) used in the above line, please see the documentation of
the MailCommand in the Messages Resource chapter of this manual.

It is HIGHLY recommended that you test one or two cases by hand to make sure that the mailhost that you
specified is correct and that it will accept your email requests. Since bsmtp always uses a TCP connection rather
than writing in the spool file, you may find that your from address is being rejected because it does not contain a
valid domain, or because your message is caught in your spam filtering rules. Generally, you should specify a
fully qualified domain name in the from field, and depending on whether your bsmtp gateway is Exim or
Sendmail, you may need to modify the syntax of the from part of the message. Please test.

When running bsmtp by hand, you will need to terminate the message by entering a ctl−d in column 1 of the last
line.

bsmtp 290

dbcheck
dbcheck is a simple program that will search for inconsistencies in your database, and optionally fix them. The
dbcheck program can be found in the <bacula−source>/src/tools directory of the source distribution. Though it
is built with the make process, it is not normally "installed".

It is called:

Usage: dbcheck [−c config] [−C catalog name] [−d debug_level] []
 −b batch mode
 −C catalog name in the director conf file
 −c director conf filename
 −dnn set debug level to nn
 −f fix inconsistencies
 −v verbose
 −? print this message

If the −c option is given with the Director's conf file, there is no need to enter any of the command line
arguments, in particular the working directory as dbcheck will read them from the file.

If the −f option is specified, dbcheck will repair (fix) the inconsistencies it finds. Otherwise, it will report only.

If the −b option is specified, dbcheck will run in batch mode, and it will proceed to examine and fix (if −f is set)
all programmed inconsistency checks. If the −b option is not specified, dbcheck will enter interactive mode and
prompt with the following:

Hello, this is the database check/correct program.
Please select the function you want to perform.

 1) Toggle modify database flag
 2) Toggle verbose flag
 3) Repair bad Filename records
 4) Repair bad Path records
 5) Eliminate duplicate Filename records
 6) Eliminate duplicate Path records
 7) Eliminate orphaned Jobmedia records
 8) Eliminate orphaned File records
 9) Eliminate orphaned Path records
 10) Eliminate orphaned Filename records
 11) Eliminate orphaned FileSet records
 12) Eliminate orphaned Client records
 13) Eliminate orphaned Job records
 14) Eliminate all Admin records
 15) Eliminate all Restore records
 16) All (3−15)
 17) Quit
Select function number:

By entering 1 or 2, you can toggle the modify database flag (−f option) and the verbose flag (−v). It can be
helpful and reassuring to turn off the modify database flag, then select one or more of the consistency checks
(items 3 through 9) to see what will be done, then toggle the modify flag on and re−run the check.

The inconsistencies examined are the following:

dbcheck 291

Duplicate filename records. This can happen if you accidentally run two copies of Bacula at the same
time, and they are both adding filenames simultaneously. It is a rare occurrence, but will create an
inconsistent database. If this is the case, you will receive error messages during Jobs warning of duplicate
database records. If you are not getting these error messages, there is no reason to run this check.

•

Repair bad Filename records. This checkes and corrects filenames that have a trailing slash. They should
not.

•

Repair bad Path records. This checks and corrects path names that do not have a trailing slash. They
should.

•

Duplicate path records. This can happen if you accidentally run two copies of Bacula at the same time,
and they are both adding filenames simultaneously. It is a rare occurrence, but will create an inconsistent
database. See the item above for why this occurs and how you know it is happening.

•

Orphaned JobMedia records. This happens when a Job record is deleted (perhaps by a user issued SQL
statement), but the corresponding JobMedia record (one for each Volume used in the Job) was not
deleted. Normally, this should not happen, and even if it does, these records generally do not take much
space in your database. However, by running this check, you can eliminate any such orphans.

•

Orphaned File records. This happens when a Job record is deleted (perhaps by a user issued SQL
statement), but the corresponding File record (one for each Volume used in the Job) was not deleted.
Note, searching for these records can be very time consuming (i.e. it may take hours) for a large
database. Normally this should not happen as Bacula takes care to prevent it. Just the same, this check
can remove any orphaned File records. It is recommended that you run this once a year since orphaned
File records can take a large amount of space in your database.

•

Orphaned Path records. This condition happens any time a directory is deleted from your system and all
associated Job records have been purged. During standard purging (or pruning) of Job records, Bacula
does not check for orphaned Path records. As a consequence, over a period of time, old unused Path
records will tend to accumulate and use space in your database. This check will eliminate them. It is
strongly recommended that you run this check at least once a year.

•

Orphaned Filename records. This condition happens any time a file is deleted from your system and all
associated Job records have been purged. This can happen quite frequently as there are quite a large
number of files that are created and then deleted. In addition, if you do a system update or delete an
entire directory, there can be a very large number of Filename records that remain in the catalog but are
no longer used.

•

During standard purging (or pruning) of Job records, Bacula does not check for orphaned Filename
records. As a consequence, over a period of time, old unused Filename records will accumulate and use
space in your database. This check will eliminate them. It is strongly recommended that you run this
check at least once a year, and for large database (more than 200 Megabytes), it is probably better to run
this once every 6 months.

Orphaned Client records. These records can remain in the database long after you have removed a client.•
Orphaned Job records. If no client is defined for a job or you do not run a job for a long time, you can
accumulate old job records. This option allow you to remove jobs that are not attached to any client (and
thus useless).

•

All Admin records. This command will remove all Admin records, regardless of their age.•
All Restore records. This command will remove all Restore records, regardless of their age.•

Bacula Storage Management System

dbcheck 292

testfind
testfind permits listing of files using the same search engine that is used for the Include resource in Job
resources. Note, much of the functionality of this program (listing of files to be included) is present in the
estimate command in the Console program.

The original use of testfind was to ensure that Bacula's file search engine was correct and to print some statistics
on file name and path length. However, you may find it useful to see what bacula would do with a given Include
resource. The testfind program can be found in the <bacula−source>/src/tools directory of the source
distribution. Though it is built with the make process, it is not normally "installed".

It is called:

Usage: testfind [−d debug_level] [−] [pattern1 ...]
 −a print extended attributes (Win32 debug)
 −dnn set debug level to nn
 − read pattern(s) from stdin
 −? print this message.

Patterns are used for file inclusion −− normally directories.
Debug level>= 1 prints each file found.
Debug level>= 10 prints path/file for catalog.
Errors are always printed.
Files/paths truncated is a number with len> 255.
Truncation is only in the catalog.

Where a pattern is any filename specification that is valid within an Include resource definition. If none is
specified, / (the root directory) is assumed. For example:

./testfind /bin

Would print the following:

Dir: /bin
Reg: /bin/bash
Lnk: /bin/bash2 −> bash
Lnk: /bin/sh −> bash
Reg: /bin/cpio
Reg: /bin/ed
Lnk: /bin/red −> ed
Reg: /bin/chgrp
...
Reg: /bin/ipcalc
Reg: /bin/usleep
Reg: /bin/aumix−minimal
Reg: /bin/mt
Lnka: /bin/gawk−3.1.0 −> /bin/gawk
Reg: /bin/pgawk
Total files : 85
Max file length: 13
Max path length: 5
Files truncated: 0
Paths truncated: 0

Even though testfind uses the same search engine as Bacula, each directory to be listed, must be entered as a

testfind 293

separate command line entry or entered one line at a time to standard input if the − option was specified.

Specifying a debug level of one (i.e. −d1) on the command line will cause testfind to print the raw filenames
without showing the Bacula internal file type, or the link (if any). Debug levels of 10 or greater cause the
filename and the path to be separated using the same algorithm that is used when putting filenames into the
Catalog database.

Bacula Storage Management System

testfind 294

bimagemgr
bimagemgr is a utility for those who backup to disk volumes in order to commit them to CDR disk, rather than
tapes. It is a web based interface written in perl, used to monitor when a volume file needs to be burned to disk. It
requires:

A web server running on the bacula server•
A CD recorder installed and configured on the bacula server•
The cdrtools package installed on the bacula server.•
perl, perl−DBI module, and either DBD−MySQL or DBD−PostgreSQL modules•

SQLite databases and DVD burning are not supported by bimagemgr at this time, but both planned for future
releases.

Installation

Please see the README file in the bimagemgr directory of the distribution for instructions.

Usage

Calling the program in your web browser, e.g. http://localhost/cgi−bin/bimagemgr.pl will
produce a display as shown below in Figure 1. The program will query the bacula database and display all
volume files with the date last written and the date last burned to disk. If a volume needs to be burned (last
written is newer than last burn date) a "Burn" button will be displayed in the right most column.

bimagemgr 295

Figure 1

Place a blank CDR disk in your recorder and click a "Burn" button. This will cause a pop up window as shown in
Figure 2 to display the burn progress.

Bacula Storage Management System

bimagemgr 296

Figure 2

When the burn finishes the pop up window will display the results of cdrecord as shown in Figure 3. Close the
pop up window and refresh the main window. The last burn date will be updated and the "Burn" button for that
volume will disappear. Should you have a failed burn you can reset the last burn date of that volume by clicking
it's "Reset" link.

Bacula Storage Management System

bimagemgr 297

Figure 3

In the bottom row of the main display window are two more buttons labeled "Burn Catalog" and "Blank CDRW".
"Burn Catalog" will place a copy of your bacula catalog on a disk. If you use CDRW disks rather than CDR then
"Blank CDRW" allows you to erase the disk before re−burning it. Regularly committing your backup volume
files and your catalog to disk with bimagemgr insures that you can rebuild easily in the event of some disaster on
the bacula server itself.

Tips and Suggestions Index Tape Testing

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

bimagemgr 298

http://www.bacula.org/

Bacula 1.36 User's Guide

Utility Programs Index When Bacula crashes (Kaboom)

Bacula Storage Management System

bimagemgr 299

Testing Your Tape Drive With Bacula
This chapter is concerned with testing and configuring your tape drive to make sure that it will work properly
with Bacula using the btape program.

Summary of Steps to Take to Get Your Tape Drive Working

In general, you should follow the following steps to get your tape drive to work with Bacula. Start with a tape
mounted in your drive. If you have an autochanger, load a tape into the drive. We use /dev/nst0 as the tape drive
name, you will need to adapt it according to your system.

Do not proceed to the next item until you have succeeded with the previous one.

Use tar to write to, then read from your drive:1.

 mt −f /dev/nst0 rewind
 tar cvf /dev/nst0 .
 mt −f /dev/nst0 rewind
 tar tvf /dev/nst0

Make sure you have a valid and correct Device resource corresponding to your drive. For Linux users,
generally, the default one works. For FreeBSD users, there are two possible Device configurations (see
below).

2.

Run the btape test command:3.

 ./btape −c bacula−sd.conf /dev/nst0
 test

It isn't necessary to run the autochanger part of the test at this time, but do not go past this point until the
basic test succeeds.
Run the btape fill command, preferrably with two volumes. This can take a long time. If you have an
autochanger and it is configured, Bacula will automatically use it. If you do not have it configured, you
can manual issue the appopriate mtx command, or press the autochanger buttons to change the tape when
requested to do so.

4.

FreeBSD users, run the tapetest program, and make sure your system is patched if necessary. See below
for more details.

5.

Run Bacula, and backup a reasonably small directory, say 60 Megabytes. Do three successive backups of
this directory.

6.

Stop Bacula, then restart it. Do another full backup of the same directory. Then stop and restart Bacula.7.
Do a restore of the directory backed up, by entering the following restore command, being careful to
restore it to an alternate location:

8.

 restore select all done
 yes

Do a diff on the restored directory to ensure it is identical to the original directory.
If you have an autochanger, you should now go back to the btape program and run the autochanger test:9.

 ./btape −c bacula−sd.conf /dev/nst0

Testing Your Tape Drive With Bacula 300

 auto

Adjust your autochanger as necessary to ensure that it works correctly. If you have reached this point, you stand a
good chance of having everything work. If you get into trouble at any point, carefully read the documentation
given below. If you cannot get past some point, ask the bacula−users email list, but specify which of the steps
you have successfully completed. In particular, you may want to look at the Tips for Resolving Problems section
below.

Specifying the Configuration File

Starting with version 1.27, each of the tape utility programs including the btape program requires a valid Storage
daemon configuration file (actually, the only part of the configuration file that btape needs is the Device resource
definitions). This permits btape to find the configuration parameters for your archive device (generally a tape
drive). Without those parameters, the testing and utility programs do not no how to properly read and write your
drive. By default, they use bacula−sd.conf in the current directory, but you may specify a different configuration
file using the −c option.

Specifying a Device Name For a Tape

btape device−name where the Volume can be found. In the case of a tape, this is the physical device name such
as /dev/nst0 or /dev/rmt/0ubn depending on your system that you specify on the Archive Device directive. For
the program to work, it must find the identical name in the Device resource of the configuration file. If the name
is not found in the list of phsical names, the utility program will compare the name you entered to the Device
names (rather than the Archive device names). See below for specifying Volume names.

Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the device−name should be the full path
to the archive location including the filename. The filename (last part of the specification) will be stripped and
used as the Volume name, and the path (first part before the filename) must have the same entry in the
configuration file. So, the path is equivalent to the archive device name, and the filename is equivalent to the
volume name.

Bacula Storage Management System

Specifying the Configuration File 301

btape
This program permits a number of elementary tape operations via a tty command interface. The test command,
described below, can be very useful for testing tape drive compatibility problems. Aside from initial testing of
tape drive compatibility with Bacula, btape will be mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will relabel a tape or write on the tape if so
requested regardless of whether or not the tape contains valuable data, so please be careful and use it only on
blank tapes.

To work properly, btape needs to read the Storage daemon's configuration file. As a default, it will look for
bacula−sd.conf in the current directory. If your configuration file is elsewhere, please use the −c option to
specify where.

The physical device name or the Device resource name must be specified on the command line, and that this
same device name must be present in the Storage daemon's configuration file read by btape

Usage: btape [options] device_name
 −b <file> specify bootstrap file
 −c <file> set configuration file to file
 −d <nn> set debug level to nn
 −s turn off signals
 −v be verbose
 −? print this message.

Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon configuration file is defined so that
Bacula will correctly read and write tapes.

It is highly recommended that you run the test command before running your first Bacula job to ensure that the
parameters you have defined for your storage device (tape drive) will permit Bacula to function properly. You
only need to mount a blank tape, enter the command, and the output should be reasonably self explanatory. For
example:

(ensure that Bacula is not running)
./btape −c /usr/bin/bacula/bacula−sd.conf /dev/nst0

The output will be:

Tape block granularity is 1024 bytes.
btape: btape.c:376 Using device: /dev/nst0
*

Enter the test command:

test

The output produced should be something similar to the following: I've cut the listing short because it is
frequently updated to have new tests.

btape 302

=== Append files test ===

This test is essential to Bacula.

I'm going to write one record in file 0,
 two records in file 1,
 and three records in file 2

btape: btape.c:387 Rewound /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:855 Wrote one record of 64412 bytes.
btape: btape.c:857 Wrote block to device.
btape: btape.c:410 Wrote EOF to /dev/nst0
btape: btape.c:387 Rewound /dev/nst0
btape: btape.c:693 Now moving to end of media.
btape: btape.c:427 Moved to end of media
We should be in file 3. I am at file 3. This is correct!

Now the important part, I am going to attempt to append to the tape.

...

=== End Append files test ===

If you do not successfully complete the above test, please resolve the problem(s) before attempting to use
Bacula. Depending on your tape drive, the test may recommend that you add certain records to your
configuration. We strongly recommend that you do so and then re−run the above test to insure it works the first
time.

Some of the suggestions it provides for resolving the problems may or may not be useful. If at all possible avoid
using fixed blocking. If the test suddenly starts to print a long series of:

Got EOF on tape.
Got EOF on tape.
...

then almost certainly, you are running your drive in fixed block mode rather than variable block mode. Please see
below for help on resolving that.

For FreeBSD users, please see the notes below for doing further testing of your tape drive.

Linux SCSI Tricks

You can find out what SCSI devices you have by doing:

cat /proc/scsi/scsi

Bacula Storage Management System

Linux SCSI Tricks 303

For example, I get the following:

Attached devices:
Host: scsi2 Channel: 00 Id: 01 Lun: 00
 Vendor: HP Model: C5713A Rev: H107
 Type: Sequential−Access ANSI SCSI revision: 02
Host: scsi2 Channel: 00 Id: 04 Lun: 00
 Vendor: SONY Model: SDT−10000 Rev: 0110
 Type: Sequential−Access ANSI SCSI revision: 02

If you want to remove the SDT−10000 device, you can do so as root with:

echo "scsi remove−single−device 2 0 4 0">/proc/scsi/scsi

and you can put add it back with:

echo "scsi add−single−device 2 0 4 0">/proc/scsi/scsi

where the 2 0 4 0 are the Host, Channel, Id, and Lun as seen on the output from cat /proc/scsi/scsi. Note, the
Channel must be specified as numeric.

Tips for Resolving Problems

Bacula Saves But Cannot Restore Files

If you are getting error messages such as:

Volume data error at 0:1! Wanted block−id: "BB02", got "". Buffer discarded

It is very likely that Bacula has tried to do block positioning and ended up at an invalid block. This can happen if
your tape drive is in fixed block mode while Bacula's default is variable blocks. Note that in such cases, Bacula is
perfectly able to write to your Volumes (tapes), but cannot position to read them.

There are two possible solutions.

The first and best is to always ensure that your drive is in variable block mode. Note, it can switch back
to fixed block mode on a reboot or if another program uses the drive. So on such systems you need to
modify the Bacula startup files to explicitly set:

1.

mt −f /dev/nst0 defblksize 0

or whatever is appropriate on your system.
The second possibility, especially, if Bacula wrote while the drive was in fixed block mode, is to turn off
block positioning in Bacula. This is done by adding:

2.

Block Positioning = no

to the Device resource. This is not the recommended procedure because it can enormously slow down recovery
of files, but it may help where all else fails. This directive is available in version 1.35.5 or later (and not yet
tested).

Bacula Storage Management System

Tips for Resolving Problems 304

Bacula Cannot Open the Device

If you get an error message such as:

dev open failed: dev.c:265 stored: unable to open
device /dev/nst0:> ERR=No such device or address

the first time you run a job, it is most likely due to the fact that you specified the incorrect device name on your
Archive Device.

If Bacula works fine with your drive, then all off a sudden you get error messages similar to the one shown
above, it is quite possible that your driver module is being removed because the kernel deems it idle. This is done
via crontab with the use of rmmod −a. To fix the problem, you can remove this entry from crontab, or you can
manually modprob your driver module (or add it to the local startup script). Thanks to Alan Brown for this tip.

Incorrect File Number

When Bacula moves to the end of the medium, it normally uses the ioctl(MTEOM) function. Then Bacula uses
the ioctl(MTIOCGET) function to retrieve the current file position from the mt_fileno field. Some SCSI tape
drivers will use a fast means of seeking to the end of the medium and in doing so, they will not know the current
file position and hence return a −1. As a consequence, if you get "This is NOT correct!" in the positioning tests,
this may be the cause. You must correct this condition in order for Bacula to work.

There are two possible solutions to the above problem of incorrect file number:

Figure out how to configure your SCSI driver to keep track of the file position during the MTEOM
request. This is the preferred solution.

•

Modify the Device resource of your bacula−sd.conf file to include:•

Hardware End of File = no

This will cause Bacula to use the MTFSF request to seek to the end of the medium, and Bacula will keep track of
the file number itself.

Incorrect Number of Blocks or Positioning Errors during btape Testing

Bacula's preferred method of working with tape drives (sequential devices) is to run in variable block mode, and
this is what is set by default. You should first ensure that your tape drive is set for variable block mode (see
below).

If your tape drive is in fixed block mode and you have told Bacula to use different fixed block sizes or variable
block sizes (default), you will get errors when Bacula attempts to forward space to the correct block (the kernel
driver's idea of tape blocks will not correspond to Bacula's).

All modern tape drives support variable tape blocks, but some older drives (in particular the QIC drives) as well
as the ATAPI ide−scsi driver run only in fixed block mode. The Travan tape drives also apparently must run in
fixed block mode (to be confirmed).

Even in variable block mode, with the exception of the first record on the second or subsequent volume of a
multi−volume backup, Bacula will write blocks of a fixed size. However, in reading a tape, Bacula will assume
that for each read request, exactly one block from the tape will be transferred. This the most common way that

Bacula Storage Management System

Bacula Cannot Open the Device 305

tape drives work and is well supported by Bacula.

Drives that run in fixed block mode can cause serious problems for Bacula if the drive's block size does not
correspond exactly to Bacula's block size. In fixed block size mode, drivers may transmit a partial block or
multiple blocks for a single read request. From Bacula's point of view, this destroys the concept of tape blocks. It
is much better to run in variable block mode, and almost all modern drives (the OnStream is an exception) run in
variable block mode. In order for Bacula to run in fixed block mode, you must include the following records in
the Storage daemon's Device resource definition:

Minimum Block Size = nnn
Maximum Block Size = nnn

where nnn must be the same for both records and must be identical to the driver's fixed block size.

We recommend that you avoid this configuration if at all possible by using variable block sizes.

If you must run with fixed size blocks, make sure they are not 512 bytes. This is too small and the overhead that
Bacula has with each record will become excessive. If at all possible set any fixed block size to something like
64,512 bytes or possibly 32,768 if 64,512 is too large for your drive. See below for the details on checking and
setting the default drive block size.

To recover files from tapes written in fixed block mode, see below.

Ensuring that the Tape Modes Are Properly Set −− Linux Only

If you have a modern SCSI tape drive and you are having problems with the test command as noted above, it
may be that some program has set one or more of the your SCSI driver's options to non−default values. For
example, if your driver is set to work in SysV manner, Bacula will not work correctly because it expects BSD
behavior. To reset your tape drive to the default values, you can try the following, but ONLY if you have a SCSI
tape drive on a Linux system:

become super user
mt −f /dev/nst0 rewind
mt −f /dev/nst0 stoptions buffer−writes async−writes read−ahead

The above commands will clear all options and then set those specified. None of the specified options are
required by Bacula, but a number of other options such as SysV behavior must not be set. On systems other than
Linux, you will need to consult your mt man pages or documentation to figure out how to do the same thing.
This should not really be necessary though −− for example, on both Linux and Solaris systems, the default tape
driver options are compatible with Bacula.

You may also want to ensure that no prior program has set the default block size, as happened to one user, by
explicitly turning it off with:

mt −f /dev/nst0 defblksize 0

If you would like to know what stoptions you have set before making any of the changes noted above, you can
now view them on Linux systems, thanks to a tip provided by Willem Riede. Do the following:

become super user
mt −f /dev/nst0 stsetoptions 0
grep st0 /var/log/messages

Bacula Storage Management System

Ensuring that the Tape Modes Are Properly Set −− Linux Only 306

and you will get output that looks something like the following:

kernel: st0: Mode 0 options: buffer writes: 1, async writes: 1, read ahead: 1
kernel: st0: can bsr: 0, two FMs: 0, fast mteom: 0, auto lock: 0,
kernel: st0: defs for wr: 0, no block limits: 0, partitions: 0, s2 log: 0
kernel: st0: sysv: 0 nowait: 0

Note, I have chopped off the beginning of the line with the date and machine name for presentation purposes.

Some people find that the above settings only last until the next reboot, so please check this otherwise you may
have unexpected problems.

Beginning with Bacula version 1.35.8, if Bacula detects that you are running in variable block mode, it will
attempt to set your drive appropriately. All OSes permit setting variable block mode, but some OSes do not
permit setting the other modes that Bacula needs to function properly.

Checking and Setting Tape Hardware Compression and Blocking Size

As far as I can tell, there is no way with the mt program to check if your tape hardware compression is turned on
or off. You can, however, turn it on by using (on Linux):

become super user
mt −f /dev/nst0 defcompression 1

and of course, if you use a zero instead of the one at the end, you will turn it off.

You may also want to ensure that no prior program has set the default block size, as happened to one user, by
explicitly turning it off with:

mt −f /dev/nst0 defblksize 0

If you have built the mtx program in the depkgs package, you can use tapeinfo to get quite a bit of information
about your tape drive even if it is not an autochanger. This program is called using the SCSI control device. On
Linux for tape drive /dev/nst0, this is usually /dev/sg0, while on FreeBSD for /dev/nsa0, the control device is
often /dev/pass2. For example on my DDS−4 drive (/dev/nst0), I get the following:

tapeinfo −f /dev/sg0
Product Type: Tape Drive
Vendor ID: 'HP '
Product ID: 'C5713A '
Revision: 'H107'
Attached Changer: No
MinBlock:1
MaxBlock:16777215
SCSI ID: 5
SCSI LUN: 0
Ready: yes
BufferedMode: yes
Medium Type: Not Loaded
Density Code: 0x26
BlockSize: 0 <==== check this
DataCompEnabled: yes <==== check this
DataCompCapable: yes
DataDeCompEnabled: yes <==== check this
CompType: 0x20

Bacula Storage Management System

Checking and Setting Tape Hardware Compression and Blocking Size 307

DeCompType: 0x0
Block Position: 1141

where the DataCompEnabled: yes means that tape hardware compression is turned on. You can see it turn on
and off (yes/no) by using the mt commands given above. Also, this output will tell you if the BlockSize is
non−zero and hence set for a particular block size. Bacula is not likely to work in such a situation because it will
normally attempt to write blocks of 64,512 bytes, except the last block of the job which will generally be shorter.
The first thing to try is setting the default block size to zero using the mt −f /dev/nst0 defblksize 0
command as shown above. On FreeBSD, this would be something like: mt −f /dev/nsa0 blocksize 0.

If your tape drive requires fixed block sizes (very unusual), you can use the following records:

Minimum Block Size = nnn
Maximum Block Size = nnn

in your Storage daemon's Device resource to force Bacula to write fixed size blocks (where you sent nnn to be
the same for both of the above records). This should be done only if your drive does not support variable block
sizes, or you have some other strong reasons for using fixed block sizes. As mentioned above, a small fixed block
size of 512 or 1024 bytes will be very inefficient. Try to set any fixed block size to something like 64,512 bytes
or larger if your drive will support it.

Also, note that the Medium Type field of the output of tapeinfo reports Not Loaded, which is not correct. As a
consequence, you should ignore that field as well as the Attached Changer field.

To recover files from tapes written in fixed block mode, see below.

Tape Modes on FreeBSD

On most FreeBSD systems such as 4.9 and most tape drives, Bacula should run with:

mt −f /dev/nsa0 seteotmodel 2
mt −f /dev/nsa0 blocksize 0
mt −f /dev/nsa0 comp enable

You might want to put those commands in a startup script to make sure your tape driver is properly initialized
before running Bacula.

Then according to what the btape test command returns, you will probably need to set the following (see below
for an alternative):

 Hardware End of Medium = no
 BSF at EOM = yes
 Backward Space Record = no
 Backward Space File = no
 Fast Forward Space File = no
 TWO EOF = yes

Then be sure to run some append tests with Bacula where you start and stop Bacula between appending to the
tape, or use btape version 1.35.1 or greater, which includes simulation of stopping/restarting Bacula.

Please see the file platforms/freebsd/pthreads−fix.txt in the main Bacula directory concerning important
information concerning compatibility of Bacula and your system. A much more optimal Device configuration is
shown below, but does not work with all tape drives. Please test carefully before putting either into production.

Bacula Storage Management System

Tape Modes on FreeBSD 308

Note, for FreeBSD 4.10−RELEASE, using a Sony TSL11000 L100 DDS4 w/Autochanger set to variable block
size and DCLZ compression, Brian McDonald reports that to get Bacula to append correctly between Bacula
executions, the correct values to use are:

mt −f /dev/nsa0 seteotmodel 1
mt −f /dev/nsa0 blocksize 0
mt −f /dev/nsa0 comp enable

and

 Hardware End of Medium = no
 BSF at EOM = no
 Backward Space Record = no
 Backward Space File = no
 Fast Forward Space File = yes
 TWO EOF = no

This has been confirmed by several other people using different hardware. This configuration is the preferred one
because it uses one EOF and no backspacing at the end of the tape, which works much more efficiently and
reliably with modern tape drives.

Determining What Tape Drives and Autochangers You Have on FreeBSD

On FreeBSD, you can do a camcontrol devlist as root to determine what drives and autochangers you have. For
example,

undef# camcontrol devlist
 at scbus0 target 2 lun 0 (pass0,sa0)
 at scbus0 target 4 lun 0 (pass1,sa1)
 at scbus0 target 4 lun 1 (pass2)

from the above, you can determine that there is a tape drive on /dev/sa0 and another on /dev/sa1 in addition since
there is a second line for the drive on /dev/sa1, you know can assume that it is the control device for the
autochanger (i.e. /dev/pass2). It is also the control device name to use when invoking the tapeinfo program. E.g.

tapeinfo −f /dev/pass2

Using the OnStream driver on Linux Systems

Bacula version 1.33 (not 1.32x) is now working and ready for testing with the OnStream kernel osst driver
version 0.9.14 or above. Osst is available from: http://sourceforge.net/projects/osst/.

To make Bacula work you must first load the new driver then, as root, do:

 mt −f /dev/nosst0 defblksize 32768

Also you must add the following to your Device resource in your Storage daemon's conf file:

 Minimum Block Size = 32768
 Maximum Block Size = 32768

Here is a Device specification provided by Michel Meyers that is known to work:

Bacula Storage Management System

Determining What Tape Drives and Autochangers You Have on FreeBSD 309

http://sourceforge.net/projects/osst/

Device {
 Name = "Onstream DI−30"
 Media Type = "ADR−30"
 Archive Device = /dev/nosst0
 Minimum Block Size = 32768
 Maximum Block Size = 32768
 Hardware End of Medium = yes
 BSF at EOM = no
 Backward Space File = yes
 Fast Forward Space File = yes
 Two EOF = no
 AutomaticMount = yes
 AlwaysOpen = yes
 Removable Media = yes
}

Using btape to Simulate Bacula Filling a Tape

Because there are often problems with certain tape drives or systems when end of tape conditions occur, btape
has a special command fill that causes it to write random data to a tape until the tape fills. It then writes at least
one more Bacula block to a second tape. Finally, it reads back both tapes to ensure that the data has been written
in a way that Bacula can recover it. Note, there is also a single tape option as noted below, which you should use
rather than the two tape test. See below for more details.

This can be an extremely time consuming process (here is is about 6 hours) to fill a full tape. Note, that btape
writes random data to the tape when it is filling it. This has two consequences: 1. it takes a bit longer to generate
the data, especially on slow CPUs. 2. the total amount of data is approximately the real physical capacity of your
tape, regardless of whether or not the tape drive compression is on or off. This is because random data does not
compress very much.

To begin this test, you enter the fill command and follow the instructions. There are two options: the simple
single tape option and the multiple tape option. Please use only the simple single tape option because the multiple
tape option still doesn't work totally correctly. If the single tape option does not succeed, you should correct the
problem before using Bacula.

Recovering Files Written to Tape With Fixed Block Sizes

If you have been previously running your tape drive in fixed block mode (default 512) and Bacula with variable
blocks (default), then in version 1.32f−x and 1.34 and above, Bacula will fail to recover files because it does
block spacing, and because the block sizes don't agree between your tape drive and Bacula it will not work.

The long term solution is to run your drive in variable block mode as described above. However, if you have
written tapes using fixed block sizes, this can be a bit of a pain. The solution to the problem is: while you are
doing a restore command using a tape written in fixed block size, ensure that your drive is set to the fixed block
size used while the tape was written. Then when doing the restore command in the Console program, do not
answer the prompt yes/mod/no. Instead, edit the bootstrap file (the location is listed in the prompt) using any
ASCII editor. Remove all VolBlock lines in the file. When the file is re−written, answer the question, and Bacula
will run without using block positioning, and it should recover your files.

Bacula Storage Management System

Using btape to Simulate Bacula Filling a Tape 310

Tape Blocking Modes

SCSI tapes may either be written in variable or fixed block sizes. Newer drives support both modes, but some
drives such as the QIC devices always use fixed block sizes. Bacula attempts to fill and write complete blocks
(default 65K), so that in normal mode (variable block size), Bacula will always write blocks of the same size
except the last block of a Job. If Bacula is configured to write fixed block sizes, it will pad the last block of the
Job to the correct size. Bacula expects variable tape block size drives to behave as follows: Each write to the
drive results in a single record being written to the tape. Each read returns a single record. If you request less byte
than are in the record, only those number of bytes will be returned, but the entire logical record will have been
read (the next read will retrieve the next record). Thus data from a single write is always returned in a single read,
and sequentially written records are returned by sequential reads.

Bacula expects fixed block size tape drives to behave as follows: If a write length is greater than the physical
block size of the drive, the write will be written as two blocks each of the fixed physical size. This a single write
may become multiple physical records on the tape. (This is not a good situation). According to the
documentation, one may never write an amount of data that is not the exact multiple of the blocksize (it is not
specified if an error occurs or if the the last record is padded). When reading, it is my understanding that each
read request reads one physical record from the tape. Due to the complications of fixed block size tape drives,
you should avoid them if possible with Bacula, or you must be ABSOLUTELY certain that you use fixed block
sizes within Bacula that correspond to the physical block size of the tape drive. This will ensure that Bacula has a
one to one correspondence between what it writes and the physical record on the tape.

Please note that Bacula will not function correctly if it writes a block and that block is split into two or more
physical records on the tape. Bacula assumes that each write causes a single record to be written, and that it can
sequentially recover each of the blocks it has written by using the same number of sequential reads as it had
written.

Utility Programs Index When Bacula crashes (Kaboom)

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Tape Testing Index Win32 Implementation

Bacula Storage Management System

Tape Blocking Modes 311

http://www.bacula.org/

What To Do When Bacula Crashes (Kaboom)
If you are running on a Linux system, and you have a set of working configuration files, it is very unlikely that
Bacula will crash. As with all software, however, it is inevitable that someday, it may crash, particularly if you
are running on another operating system or using a new or unusual feature.

This chapter explains what you should do if one of the three Bacula daemons (Director, File, Storage) crashes.

Traceback

Each of the three Bacula daemons has a built−in exception handler which, in case of an error, will attempt to
produce a traceback. If successful the traceback will be emailed to you.

For this to work, you need to ensure that a few things are setup correctly on your system:

You must have an installed copy of gdb (the GNU debugger), and it must be on Bacula's path.1.
The Bacula installed script file btraceback must be in the same directory as the daemon which dies, and
it must be marked as executable.

2.

The script file btraceback.gdb must have the correct path to it specified in the btraceback file.3.
You must have a mail program which is on Bacula's path.4.

If all the above conditions are met, the daemon that crashes will produce a traceback report and email it to you. If
the above conditions are not true, you can either run the debugger by hand as described below, or you may be
able to correct the problems by editing the btraceback file. I recommend not spending too much time on trying
to get the traceback to work as it can be very difficult.

The changes that might needed are to add a correct path to the gdb program, correct the path to the
btraceback.gdb file, change the mail program or its path, or change your email address. The key line in the
btraceback file is:

gdb −quiet −batch −x /home/kern/bacula/bin/btraceback.gdb \
 $1 $2 2>1| mail −s "Bacula traceback" your−address@xxx.com

Since each daemon has the same traceback code, a single btraceback file is sufficient if you are running more
than one daemon on a machine.

Testing The Traceback

To "manually" test the traceback feature, you simply start Bacula then obtain the PID of the main daemon thread
(there are multiple threads). Unfortunately, the output had to be split to fit on this page:

[kern@rufus kern]$ ps fax −−columns 132 | grep bacula−dir
 2103 ? S 0:00 /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2104 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2106 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf
 2105 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula−dir −c
 /home/kern/bacula/k/src/dird/dird.conf

What To Do When Bacula Crashes (Kaboom) 312

which in this case is 2103. Then while Bacula is running, you call the program giving it the path to the Bacula
executable and the PID. In this case, it is:

./btraceback /home/kern/bacula/k/src/dird 2103

It should produce an email showing you the current state of the daemon (in this case the Director), and then exit
leaving Bacula running as if nothing happened. If this is not the case, you will need to correct the problem by
modifying the btraceback script.

Typical problems might be that gdb is not on the default path. Fix this by specifying the full path to it in the
btraceback file. Another common problem is that the mail program doesn't work or is not on the default path.
On some systems, it is preferable to use Mail rather than mail.

Getting A Traceback On Other Systems

It should be possible to produce a similar traceback on systems other than Linux, either using gdb or some other
debugger. Solaris with gdb loaded works quite fine. On other systems, you will need to modify the btraceback
program to invoke the correct debugger, and possibly correct the btraceback.gdb script to have appropriate
commands for your debugger. If anyone succeeds in making this work with another debugger, please send us a
copy of what you modified.

Manually Running Bacula Under The Debugger

If for some reason you cannot get the automatic traceback, or if you want to interactively examine the variable
contents after a crash, you can run Bacula under the debugger. Assuming you want to run the Storage daemon
under the debugger (the technique is the same for the other daemons, only the name changes), you would do the
following:

Start the Director and the File daemon. If the Storage daemon also starts, you will need to find its PID as
shown above (ps fax | grep bacula−sd) and kill it with a command like the following:

1.

 kill −15 PID

where you replace PID by the actual value.
At this point, the Director and the File daemon should be running but the Storage daemon should not.2.
cd to the directory containing the Storage daemon3.
Start the Storage daemon under the debugger:4.

 gdb ./bacula−sd

Run the Storage daemon:5.

 run −s −f −c ./bacula−sd.conf

You may replace the ./bacula−sd.conf with the full path to the Storage daemon's configuration file.
At this point, Bacula will be fully operational.6.
In another shell command window, start the Console program and do what is necessary to cause Bacula
to die.

7.

Bacula Storage Management System

Getting A Traceback On Other Systems 313

When Bacula crashes, the gdb shell window will become active and gdb will show you the error that
occurred.

8.

To get a general traceback of all threads, issue the following command:9.

 thread apply all bt

After that you can issue any debugging command.

Getting Debug Output from Bacula

Each of the daemons normally has debug compiled into the program, but disabled. There are two ways to enable
the debug output. One is to add the −d nnn option on the command line when starting the debugger. The nnn is
the debug level, and generally anything between 50 and 200 is reasonable. The higher the number, the more
output is produced. The output is written to standard output.

The second way of getting debug output is to dynamically turn it on using the Console using the setdebug
command. The full syntax of the command is:

 setdebug level=nnn client=client−name storage=storage−name dir

If none of the options are given, the command will prompt you. You can selectively turn on/off debugging in any
or all the daemons (i.e. it is not necessary to specify all the components of the above command).

Tape Testing Index Win32 Implementation

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

What to do when Bacula crashes (Kaboom) Index Disaster Recovery Using Bacula

Bacula Storage Management System

Getting Debug Output from Bacula 314

http://www.bacula.org/

The Windows Version of Bacula

General

At the current time only the File daemon or Client program has been tested on Windows. As a consequence,
when we speak of the Windows version of Bacula below, we are referring to the File daemon only.

The Windows version of the Bacula File daemon has been tested on Win98, WinMe, WinNT, and Win2000
systems. We have coded to support Win95, but no longer have a system for testing. The Windows version of
Bacula is a native Win32 port, but there are very few source code changes, which means that the Windows
version is for the most part running code that has long proved stable on Unix systems. When running, it is
perfectly integrated with Windows and displays its icon in the system icon tray, and provides a system tray menu
to obtain additional information on how Bacula is running (status and events dialog boxes). If so desired, it can
also be stopped by using the system tray menu, though this should normally never be necessary.

Once installed Bacula normally runs as a system service. This means that it is immediately started by the
operating system when the system is booted, and runs in the background even if there is no user logged into the
system.

Installation

Normally, you will install the Windows version of Bacula from the binaries. This install is standard Windows
.exe that runs an install wizard using the NSIS Free Software installer, so if you have already installed Windows
software, it should be very familiar to you.

If you have a previous version Cygwin of Bacula (1.32 or lower) installed, you should stop the service, uninstall
it, and remove the directory possibly saving your bacula−fd.conf file for use with the new version you will
install. The new native version of Bacula has far fewer files than the old Cygwin version.

Finally, proceed with the installation.

Simply double click on the winbacula−1.xx.0.exe NSIS install icon. The actual name of the icon will
vary from one release version to another.

•

 winbacula−1.xx.0.exe

Once launched, the installer wizard will ask you if you want to install Bacula.•

The Windows Version of Bacula 315

If you proceed, you will be asked to select the components to be installed. You may install the Bacula
program (Bacula File Service) and or the documentation. Both will be installed in sub−directories of the
install location that you choose later. The components dialog looks like the following:

•

Next you will be asked to select an installation directory.•

Bacula Storage Management System

The Windows Version of Bacula 316

If you are installing for the first time, you will be asked if you want to edit the bacula−fd.conf file, and if
you respond with yes, it will be opened in notepad.

•

Then the installer will ask if wish to install Bacula as a service. You should always choose to do so:•

If everything goes well, you will receive the following confirmation:•

Bacula Storage Management System

The Windows Version of Bacula 317

Then you will be asked if you wish to start the service. If you respond with yes, any running Bacula will
be shutdown and the new one started. You may see a DOS box momentarily appear on the screen as the
service is started. It should disappear in a second or two:

•

Finally, the finish dialog will appear:•

Bacula Storage Management System

The Windows Version of Bacula 318

That should complete the installation process. When the Bacula File Server is ready to serve files, an icon
representing a cassette (or tape) will appear in the system tray ; right click on it and a menu will

appear.

The Events item is currently unimplemented, by selecting the Status item, you can verify whether any jobs are
running or not.

When the Bacula File Server begins saving files, the color of the holes in the cassette icon will change from
white to green , and if there is an error, the holes in the cassette icon will change to red .

If you are using remote desktop connections between your windows boxes, be warned that that tray icon does not
always appear. It will always be visible when you log into the console, but the remote desktop may not display it.

Post Installation

After installing Bacula and before running it, you should check the contents of c:\bacula\bin\bacula−fd.conf to
ensure that it corresponds to your configuration.

Uninstalling Bacula

Once Bacula has been installed, it can be uninstalled using the standard Windows Add/Remove Programs dialog
found on the Control panel.

Dealing with Problems

The most likely source of problems is authentication when the Director attempts to connect to the File daemon
that you installed. This can occur if the names and the passwords defined in the File daemon's configuration file
c:\bacula\bin\bacula−fd.conf on the Windows machine do not match with the names and the passwords in the
Director's configuration file bacula−dir.conf located on your Unix/Linux server.

More specifically, the password found in the Client resource in the Director's configuration file must be the same
as the password in the Director resource of the File daemon's configuration file. In addition, the name of the
Director resource in the File daemon's configuration file must be the same as the name in the Director resource
of the Director's configuration file.

It is a bit hard to explain in words, but if you understand that a Director normally has multiple Clients and a
Client (or File daemon) may permit access by multiple Directors, you can see that the names and the passwords
on both sides must match for proper authentication.

One user had serious problems with the configuration file until he realized that the Unix end of line conventions

Bacula Storage Management System

Post Installation 319

were used and Bacula wanted them in Windows format. This has not been confirmed though.

Running Unix like programs on Windows machines is a bit frustrating because the Windows command line shell
(DOS Window) is rather primitive. As a consequence, it is not generally possible to see the debug information
and certain error messages that Bacula prints. With a bit of work, however, it is possible. When everything else
fails and you want to see what is going on, try the following:

 Start a DOS shell Window.

 cd c:\bacula\bin
 bacula−fd −t >out
 type out

The −t option will cause Bacula to read the configuration file, print any error messages and then exit. the >
redirects the output to the file named out, which you can list with the type command.

If something is going wrong later, or you want to run Bacula with a debug option, you might try starting it as:

 bacula−fd −d 100 >out

In this case, Bacula will run until you explicitly stop it, which will give you a chance to connect to it from your
Unix/Linux server.

In addition, you should look in the System Applications log on the Control Panel to find any Windows errors that
Bacula got during the startup process.

Finally, due to the above problems, when you turn on debugging, and specify trace=1 on a setdebug command in
the Console, Bacula will write the debug information to the file bacula.trace in the directory from which Bacula
is executing.

Windows Compatibility Considerations

If any applications are running during the backup and they have open files, Bacula will not be able to backup
those files, so be sure you close your applications (or tell your users to close their applications) before the
backup.

During backup, Bacula doesn't know about the system registry, so you will either need to write it out to an ASCII
file using regedit /e or use a program specifically designed to make a copy or backup the registry.

In Bacula versions 1.30 and earlier, we used the Cygwin emulation of Unix open(), read(), write(), ... calls to
access files. This worked pretty well for Win95, Win98, and WinMe systems, but not very well for the other
systems (NT/2K/XP) because those systems have special security and ownership information that was not saved.
In addition on the NT/2K/XP systems, older versions of Bacula were not always able to access all files due to
system permissions restrictions.

As a consequence, in Bacula version 1.31 and later, we use Windows backup API calls by default. Typical of
Windows, programming these special BackupRead and BackupWrite calls is a real nightmare of complications.
The end result gives some distinct advantages and some disadvantages.

First, the advantages are that on WinNT/2K/XP systems, the security and ownership information is now backed
up. In addition, with the exception of files in use by another program (a major disaster for backup programs on
Windows), Bacula can now access all system files. This means that when you restore files, the security and

Bacula Storage Management System

Windows Compatibility Considerations 320

ownership information will be restored on WinNT/2K/XP along with the data.

The disadvantage of the Windows backup API calls is that it produces non−portable backups. That is files and
their data that are backed up on WinNT using the native API calls (BackupRead/BackupWrite) cannot be
restored on Win95/98/Me or Unix systems. In principle, a file backed up on WinNT can be restored on WinXP,
but this remains to be seen in practice (not yet tested). In addition, the stand−alone tools such as bls and bextract
cannot be used to retrieve the data for those files because those tools are not available on Windows. All restores
must use the Bacula restore command. This restriction is mentioned for completeness, but in practice should not
create any problems.

As a default, Bacula backs up Windows systems using the Windows API calls. If you want to backup data on a
WinNT/2K/XP system and restore it on a Unix/Win95/98/Me system, we have provided a special portable
option that backups the data in a portable fashion by using portable API calls. See the portable option on the
Include statement in a FileSet resource in the Director's configuration chapter for the details on setting this
option. However, using the portable option means you may have permissions problems accessing files, and none
of the security and ownership information will be backed up or restored. The file data can, however, be restored
on any system.

You should always be able to restore any file backed up on Unix or Win95/98/Me to any other system. On some
systems, such as WinNT/2K/XP, you may have to reset the ownership of such restored files. Any file backed up
on WinNT/2K/XP should in principle be able to be restored to a similar system (i.e. WinNT/2K/XP), however, I
am unsure of the consequences if the owner information and accounts are not identical on both systems. Bacula
will not let you restore files backed up on WinNT/2K/XP to any other system (i.e. Unix Win95/98/Me) if you
have used the defaults.

Finally, if you specify the portable=yes option on the files you back up. Bacula will be able to restore them on
any other system. However, any WinNT/2K/XP specific security and ownership information will be lost.

The following matrix will give you an idea of what you can expect. Thanks to Marc Brueckner for doing the
tests:

Backup OS Restore OS Results

WinMe WinMe Works

WinMe WinNT Works (SYSTEM permissions)

WinMe WinXP Works (SYSTEM permissions)

WinMe Linux Works (SYSTEM permissions)

WinXP WinXP Works

WinXP WinNT Works (all files OK, but got "The data is invalid" message)

WinXP WinMe
Error: Win32 data stream not supported.

WinXP WinMe Works if Portable=yes specified during backup.

Bacula Storage Management System

Windows Compatibility Considerations 321

WinXP Linux
Error: Win32 data stream not supported.

WinXP Linux Works if Portable=yes specified during backup.

WinNT WinNT Works

WinNT WinXP Works

WinNT WinMe Error: Win32 data stream not supported.

WinNT WinMe Works if Portable=yes specified during backup.

WinNT Linux Error: Win32 data stream not supported.

WinNT Linux Works if Portable=yes specified during backup.

Linux Linux Works

Linux WinNT Works (SYSTEM permissions)

Linux WinMe Works

Linux WinXP Works (SYSTEM permissions)

Windows Firewalls

If you turn on the firewalling feature on Windows (default in WinXP SR2), you are likely to find that the Bacula
ports are blocked and you cannot communicated to the other daemons. This can be deactivated through the
Security Notification dialog, which is apparently somewhere in the Security Center. I don't have this on my
computer, so I cannot give the exact details.

The command:

netsh firewall set opmode disable

is purported to disable the firewall, but this command is not accepted on my WinXP Home machine.

Windows Disaster Recovery

We don't currently have a good solution for disaster recovery on Windows as we do on Linux. The main piece
lacking is a Windows boot floppy or a Windows boot CD. Microsoft releases a Windows Pre−installation
Environment (WinPE) that could possibly work, but we have not investigated it. This means that until someone
figures out the correct procedure, you must restore the OS from the installation disks, then you can load a Bacula
client and restore files. Please don't count on using bextract to extract files from your backup tapes during a
disaster recovery unless you have backed up those files using the portable option. bextract does not run on
Windows, and the normal way Bacula saves files using the Windows API prevents the files from being restored
on a Unix machine. Once you have an operational Windows OS loaded, you can run the File daemon and restore
your user files.

Bacula Storage Management System

Windows Firewalls 322

Please see Disaster Recovery of Win32 Systems for the latest suggestion, which looks very promising.

It looks like Bart PE Builder, which creates a Windows PE (Pre−installation Environment) Boot−CD, may be just
what is needed to build a complete disaster recovery system for Win32. This distribution can be found at
http://www.nu2.nu/pebuilder/ .

Windows Ownership and Permissions Problems

If you restore files backed up from WinNT/XP/2K to an alternate directory, Bacula may need to create some
higher level directories that were not saved (or restored). In this case, the File daemon will create them under the
SYSTEM account because that is the account that Bacula runs under as a service. As of version 1.32f−3, Bacula
creates these files with full access permission. However, there may be cases where you have problems accessing
those files even if you run as administrator. In principle, Microsoft supplies you with the way to cease the
ownership of those files and thus change the permissions. However, a much better solution to working with and
changing Win32 permissions is the program SetACL, which can be found at http://setacl.sourceforge.net/ .

Manually resetting the Permissions

The following solution was provided by Dan Langille <dan at langille in the dot org domain>. The steps are
performed using Windows 2000 Server but they should apply to most Win32 platforms. The procedure outlines
how to deal with a problem which arises when a restore creates a top−level new directory. In this example,
"top−level" means something like c:\src, not c:\tmp\src where c:\tmp already exists. If a restore job specifies /
as the Where: value, this problem will arise.

The problem appears as a directory which cannot be browsed with Windows Explorer. The symptoms include the
following message when you try to click on that directory:

If you encounter this message, the following steps will change the permissions to allow full access.

right click on the top level directory (in this example, c:/src) and select Properties.1.
click on the Security tab.2.
If the following message appears, you can ignore it, and click on OK.3.

You should see something like this:

Bacula Storage Management System

Windows Ownership and Permissions Problems 323

http://www.nu2.nu/pebuilder/
http://setacl.sourceforge.net/

click on Advanced4.
click on the Owner tab5.
Change the owner to something other than the current owner (which is SYSTEM in this example as
shown below).

6.

Bacula Storage Management System

Windows Ownership and Permissions Problems 324

ensure the "Replace owner on subcontainers and objects" box is checked7.
click on OK8.
When the message "You do not have permission to read the contents of directory "c:\src\basis. Do you
wish to replace the directory permissions with permissions granting you Full Control?", click on Yes.

9.

Click on OK to close the Properties tab10.

With the above procedure, you should now have full control over your restored directory.

Backing Up the WinNT/XP/2K System State

A suggestion by Damian Coutts using Microsoft's NTBackup utility in conjunction with Bacula should permit a
full restore of any damaged system files on Win2K/XP. His suggestion is to do an NTBackup of the critical
system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

Bacula Storage Management System

Backing Up the WinNT/XP/2K System State 325

The backup is the command, the systemstate says to backup only the system state and not all the user files, and
the /F c:\systemstate.bkf specifies where to write the state file. this file must then be saved and restored by
Bacula.

To restore the system state, you first reload a base operating system if the OS is damaged, otherwise, this is not
necessary, then you would use Bacula to restore all the damaged or lost user's files and to recover the
c:\systemstate.bkf file. Finally if there are any damaged or missing system files or registry problems, you run
NTBackup and catalogue the system statefile, and then select it for restore. The documentation says you can't
run a command line restore of the systemstate.

To the best of my knowledge, this has not yet been tested. If you test it, please report your results to the Bacula
email list.

Windows Considerations for Filename Specifications

Please see the Director's Configuration chapter of this manual for important considerations on how to specify
Windows paths in Bacula FileSet Include and Exclude directives.

Command Line Options Specific to the Bacula Windows File Daemon (Client)

These options are not normally seen or used by the user, and are documented here only for information purposes.
At the current time, to change the default options, you must either manually run Bacula or you must manually
edit the system registry and modify the appropriate entries.

In order to avoid option clashes between the options necessary for Bacula to run on Windows and the standard
Bacula options, all Windows specific options are signaled with a forward slash character (/), while as usual, the
standard Bacula options are signaled with a minus (−), or a minus minus (−−). All the standard Bacula options
can be used on the Windows version. In addition, the following Windows only options are implemented:

/servicehelper
Run the service helper application (don't use this it is deprecated.).

/service
Start Bacula as a service

/run
Run the Bacula application

/install
Install Bacula as a service in the system registry

/remove
Uninstall Bacula from the system registry

/about
Show the Bacula about dialogue box

/status
Show the Bacula status dialogue box

/events
Show the Bacula events dialogue box (not yet implemented)

/kill
Stop any running Bacula

/help
Show the Bacula help dialogue box

Bacula Storage Management System

Windows Considerations for Filename Specifications 326

It is important to note that under normal circumstances the user should never need to use these options as they are
normally handled by the system automatically once Bacula is installed. However, you may note these options in
some of the .bat files that have been created for your use.

Shutting down Windows Systems

Some users like to shutdown their windows machines after a backup using a Client Run After Job directive. If
you want to do something similar, you might take the shutdown program from the apcupsd project or one from
the Sysinternals project.

What to do when Bacula crashes (Kaboom) Index Disaster Recovery Using Bacula

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

The Windows Version of Bacula Index Disaster Recovery Using a Bacula Rescue
Floppy

Bacula Storage Management System

Shutting down Windows Systems 327

http://www.apcupsd.com
http://www.sysinternals.com/ntw2k/freeware/psshutdown.shtml
http://www.bacula.org/

Disaster Recovery Using Bacula

General

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise the work of
recovering your system and your files will be considerably greater. For example, if you have not previously
saved the partitioning information for your hard disk, how can you properly rebuild it if the disk must be
replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very operating system
dependent. As a consequence, this chapter will discuss in detail disaster recovery (also called Bare Metal
Recovery) for Linux and Solaris. For Solaris, the procedures are still quite manual. For FreeBSD the same
procedures may be used but they are not yet developed. For Win32, no luck. Apparently an "emergency boot"
disk allowing access to the full system API without interference does not exist.

Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into account before a
disaster strikes.

If the building which houses your computers burns down or is otherwise destroyed, do you have off−site
backup data?

•

Disaster recovery is much easier if you have several machines. If you have a single machine, how will
you handle unforeseen events if your only machine is down?

•

Do you want to protect your whole system and use Bacula to recover everything? or do you want to try to
restore your system from the original installation disks and apply any other updates and only restore user
files?

•

Steps to Take Before Disaster Strikes

Create a Bacula Rescue CDROM for each of your Linux systems. Note, it is possible to create one
CDROM by copying the bacula−hostname directory from each machine to the machine where you will
be burning the CDROM.

•

Ensure that you always have a valid bootstrap file for your backup that is saved to an alternate machine.
This will permit you to easily do a full restore of your system.

•

If possible copy your catalog nightly to an alternate machine. If you have a valid bootstrap file, this is not
necessary, but can be very useful if you do not want to reload everything. .

•

Ensure that you always have a valid bootstrap file for your catalog backup that is saved to an alternate
machine. This will permit you to restore your catalog more easily if needed.

•

Test using the Bacula Rescue CDROM before you are forced to use it in an emergency situation.•

Bare Metal Recovery on Linux with a Bacula Rescue CDROM

The remainder of this section concerns recovering a Linux computer, and parts of it relate to the Red Hat version
of Linux. The Solaris procedures can be found below under the Solaris Bare Metal Recovery section of this
chapter.

Disaster Recovery Using Bacula 328

If you wish to use a floppy for restoration, please see the chapter Bare Metal Floppy Recovery on Linux with a
Bacula Floppy Rescue Disk.

A so called "Bare Metal" recovery is one where you start with an empty hard disk and you restore your machine.
There are also cases where you may lose a file or a directory and want it restored. Please see the previous chapter
for more details for those cases.

Bare Metal Recovery assumes that you have the following items for your system:

A Bacula Rescue CDROM containing a copy of your OS and a copy of your hard disk information, as
well as a statically linked version of the Bacula File daemon.

•

A full Bacula backup of your system possibly including Incremental or Differential backups since the last
Full backup

•

A second system running the Bacula Director, the Catalog, and the Storage daemon. (this is not an
absolute requirement, but how to get around it is not yet documented here)

•

Restrictions

In addition, to the above assumptions, the following conditions or restrictions apply:

Linux only −− tested only on Red Hat, but should work on other Linuxes•
The scripts handle only SCSI and IDE disks•
All partitions will be recreated, but only ext2, ext3, rfs and swap partitions will be reformatted. Any
other partitions such as Windows FAT partitions will not be formatted by the scripts, but you can do it by
hand

•

You are using either lilo or grub as a boot loader, and you know which one (not automatically detected)•
The partitioning and reformating scripts will *should* work with RAID devices, but probably not with
other "complicated" disk partitioning/formating schemes. They also should work with Reiser filesystems.
Please check them carefully. You will probably need to edit the scripts by hand to make them work.

•

Directories

To build the Bacula Rescue CDROM, you will find the necessary scripts in rescue/linux/cdrom subdirectory of
the Bacula source code.

Preparation for a Bare Metal Recovery

Before you can do a Bare Metal recovery, you must create a Bacula Rescue CDROM, which will contain
everything you need to begin recovery. This assumes that you will have your Directory and Storage daemon
running on a different machine. If you want to recover a machine where the Director and/or the database were
previously running things will be much more complicated.

Creating a Bacula Rescue CDROM

The primary goals of the Bacula rescue CD are:

NOT to be a general or universal recovery disk.•
to capture and setup a restore environment for a single system running as a Client.•
to capture the current state of the hard disks on your system, so that they can be easily restored from•

Bacula Storage Management System

Restrictions 329

pre−generated scripts.
to create and save a statically linked copy of your current Bacula FD.•
to be relatively easy to create. In most cases you simply type make all in the rescue/linux/cdrom
directory, then burn the ISO image created. In contrast, if you have looked at any of the documentation
on how to remaster a CD or how to roll your own, your head will spin (at least mine did).

•

to be easy for you to add any additional files, binaries, or libraries to the CD.•
to build and work on any (or almost any) Linux flavor or release.•

On of the main of the advantages of a Bacula Rescue CDROM is that it contains a bootable copy of your system,
so you should be familiar with it.

You should probably make a new rescue CDROM each time you make any major updates to your kernel, and
every time you upgrade a major version of Bacula.

The whole process with the exception of burning the CDROM is done with the following commands:

(Build a working version of Bacula in the
 bacula−source directory)
cd <bacula−source>
./configure (your options)
make
cd <bacula−source>/rescue/linux/cdrom
su (become root)
make all

At this point, if the scripts are successful, they should have done the following things:

Made a copy of your kernel and its essential files.•
Copied a number of binary files from your system.•
Copied all the necessary shared libraries to run the above binary files.•
Made a statically−linked version of your File daemon and copied it into the CDROM build area.•
Made an ISO image and left it in bootcd.iso•

Once this is accomplished, you need only burn it into a CDROM. This can be done directly from the makefile
with:

make burn

However, you may need to modify the Makefile to properly specify your CD burner as the detection process is
complicated especially if you have two CDROMs or do not have cdrecord loaded on your system. If you find
that the make burn does not work for you, try doing a:

make scan

and use the output of that to modify the Makefile accordingly.

The "make all" that you did above actually does the equivalent to the following:

make kernel
make binaries
make bacula
make iso

Bacula Storage Management System

Restrictions 330

If you wish, you can modify what you put on the CDROM and redo any part of the make that you wish. For
example, if you want to add a new directory, you might do the first three makes, then add a new directory to the
CDROM, and finally do a "make iso". Please see the README file in the rescue/linux/cdrom directory for
instructions on changing the contents of the CDROM.

At the current time, the size of the CDROM is about 50MB (compressed to about 20MB), so there is quite a bit
more room for additional program. Keep in mind that when this CDROM is booted, *everything* is in memory,
so the total size cannot exceed your memory size, and even then you will need some reserve memory for running
programs, ...

Putting Two or More Systems on Your Rescue Disk

You can put multiple systems on the same rescue CD if you wish. This is because the information that is specific
to your OS will be stored in the /bacula−hostname directory, where hostname is the name of the host on which
you are building the CD. Suppose for example, you have two systems. One named client1 and one named
client2. Assume also that your CD burner is on client1, and that is the machine we start on, and that we can ssh
into client2 and also client2's disks are mounted on client1.

ssh client2
cd <bacula−source>
./configure (your options)
make
cd rescue/linux/cdrom
su
(enter root password)
make bacula
exit
exit

Thus we have just built a Bacula rescue directory on client2. Now, on client1, we copy the appropriate directory
to two places (explained below), then build an ISO and burn it:

cd <bacula−source>
./configure (your options)
make
cd rescue/linux/cdrom
su
(enter root password)
c=/mnt/client2/home/user/bacula/rescue/linux/cdrom
cp −a $c/roottree/bacula−client2 roottree
cp −a $c/roottree/bacula−client2 cdtree
make all
make burn
exit

In summary, with the above commands, we first build a Bacula directory on client2 in roottree/bacula−client2,
then we copied the bacula−client2 directory into the client1's roottree so it is available in memory after booting,
and we also copied it into the cdtree so it will also be on the CD as a separate directory and thus can be read
without booting the CDROM. Then we made and burned the CDROM for client1, which of course, contains the
client2 data.

Bacula Storage Management System

Putting Two or More Systems on Your Rescue Disk 331

Restoring a Client System

Now, let's assume that your hard disk has just died and that you have replaced it with an new identical drive. In
addition, we assume that you have:

A recent Bacula backup (Full plus Incrementals)1.
A Bacula Rescue CDROM.2.
Your Bacula Director, Catalog, and Storage daemon running on another machine on your local network.3.

This is a relatively simple case, and later in this chapter, as time permits, we will discuss how you might recover
from a situation where the machine that crashes is your main Bacula server (i.e. has the Director, the Catalog, and
the Storage daemon).

You will take the following steps to get your system back up and running:

Boot with your Bacula Rescue CDROM.1.
Start the Network (local network)2.
Re−partition your hard disk(s) as it was before3.
Re−format your partitions4.
Restore the Bacula File daemon (static version)5.
Perform a Bacula restore of all your files6.
Re−install your boot loader7.
Reboot8.

Now for the details ...

Boot with your Bacula Rescue CDROM

When the CDROM boots, you will be presented with a script that looks like:

 Welcome to the Bacula Rescue Disk 1.1.0

To proceed, press the <ENTER> key or type "linux <runlevel>"

 linux 1 −> shell
 linux 2 −> login (default if ENTER pressed)
 linux 3 −> network started and login (network not working yet)
 linux debug −> print debug during boot then login

Normally, at this point, you simply press ENTER. However, you may supply options for the boot if you wish.

Once it has booted, you will be requested to login something like:

Welcome to the Bacula Rescue CDROM
2.4.21−15.0.4.EL #1 Wed Aug 4 03:08:03 EDT 2004

Please login using root and your root password ...
RescueCD login:

Note, you must enter the root password for the system on which you loaded the kernel or on which you did the
build of the CDROM. Once you are logged in, your will be in the home directory for root, and you can proceed

Bacula Storage Management System

Restoring a Client System 332

to examine your system.

The complete Bacula rescue part of the CD will be in the directory: /bacula−hostname, where hostname is
replaced by the name of the host machine on which you did the build for the CDROM. This naming procedure
allows you to put multiple restore environments for each of your machines on a single CDROM if you so wish to
do. Please see the README document in the rescue/linux/cdrom directory for more information on adding to
the CDROM.

Start the Network

At this point, you should bring up your network. Normally, this is quite simple and requires just a few
commands. Please cd into the /bacula−hostname directory before continuing. To simplify your task, we have
created a script that should work in most cases by typing:

cd /bacula−hostname
./start_network

You can test it by pinging another machine, or pinging your broken machine machine from another machine. Do
not proceed until your network is up.

Partition Your Hard Disk(s)

Assuming that your hard disk crashed and needs repartitioning, proceed with:

./partition.hda

If you have multiple disks, do the same for each of them. For SCSI disks, the repartition script will be named:
partition.sda. If the script complains about the disk being in use, simply go back and redo the df command and
umount commands until you no longer have your hard disk mounted. Note, in many cases, if your hard disk was
seriously damaged or a new one installed, it will not automatically be mounted. If it is mounted, it is because the
emergency kernel found one or more possibly valid partitions.

If for some reason this procedure does not work, you can use the information in partition.hda to re−partition
your disks by hand using fdisk.

Format Your Hard Disk(s)

If you have repartitioned your hard disk, you must format it appropriately. The formatting script will put back
swap partitions, normal Unix partitions (ext2) and journaled partitions (ext3) as well as Reiser partitions (rei). Do
so by entering for each disk:

./format.hda

The format script will ask you if you want a block check done. We recommend to answer yes, but realize that for
very large disks this can take hours.

Mount the Newly Formatted Disks

Once the disks are partitioned and formatted, you can remount them with the mount_drives script. All your
drives must be mounted for Bacula to be able to access them. Run the script as follows:

./mount_drives

Bacula Storage Management System

Start the Network 333

df

The df command will tell you if the drives are mounted. If not, re−run the script again. It isn't always easy to
figure out and create the mount points and the mounts in the proper order, so repeating the ./mount_drives
command will not cause any harm and will most likely work the second time. If not, correct it by hand before
continuing.

Restore and Start the File Daemon

If you have booted with a Bacula Rescue CDROM, your statically linked Bacula File daemon and the
bacula−fd.conf file with be in the /bacula−hostname/bin directory. Make sure bacula−fd and bacula−fd.conf are
both there.

Edit the Bacula configuration file, create the working/pid/subsys directory if you haven't already done so above,
and start Bacula. Before starting Bacula, you will need to move it and bacula−fd.conf from
/bacula−hostname/bin, to the /mnt/disk/tmp directory so that it will be on your hard disk. Then start it with the
following command:

chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf

The above command starts the Bacula File daemon with your the proper root disk location (i.e. /mnt/disk/tmp. If
Bacula does not start correct the problem and start it. You can check if it is running by entering:

ps fax

You can kill Bacula by entering:

kill −TERM <pid>

where pid is the first number printed in front of the first occurrence of bacula−fd in the ps fax command.

Now, you should be able to use another computer with Bacula installed to check the status by entering:

status client=xxxx

into the Console program, where xxxx is the name of the client you are restoring.

One common problem is that your bacula−dir.conf may contain machine addresses that are not properly
resolved on the stripped down system to be restored because it is not running DNS. This is particularly true for
the address in the Storage resource of the Director, which may be very well resolved on the Director's machine,
but not on the machine being restored and running the File daemon. In that case, be prepared to edit
bacula−dir.conf to replace the name of the Storage daemon's domain name with its IP address.

Restore Your Files

On the computer that is running the Director, you now run a restore command and select the files to be restored
(normally everything), but before starting the restore, there is one final change you must make using the mod
option. You must change the Where directory to be the root by using the mod option just before running the job
and selecting Where. Set it to:

/

Bacula Storage Management System

Restore and Start the File Daemon 334

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly and then using a Where to specify a
destination of /mnt/disk. This is possible, however, the current version of Bacula always restores files to the new
location, and thus any soft links that have been specified with absolute paths will end up with /mnt/disk prefixed
to them. In general this is not fatal to getting your system running, but be aware that you will have to fix these
links if you do not use chroot.

Final Step

At this point, the restore should have finished with no errors, and all your files will be restored. One last task
remains and that is to write a new boot sector so that your machine will boot. For lilo, you enter the following
command:

./run_lilo

If you are using grub instead of lilo, you must enter the following:

./run_grub

Note, I've had quite a number of problems with grub because it is rather complicated and not designed to install
easily under a simplified system. So, if you experience errors or end up unexpectedly in a chroot shell, simply
exit back to the normal shell and type in the appropriate commands from the run_grub script by hand until you
get it to install. When you run the run_grub script, it will print the commands that you should manually enter if
that is necessary.

Reboot

First unmount all your hard disks, otherwise they will not be cleanly shutdown, then reboot your machine by
entering exit until you get to the main prompt then enter ctl−d. Once back to the main CDROM prompt, you will
need to turn the power off then back on to your machine to get it to reboot.

If everything went well, you should now be back up and running. If not, re−insert the emergency boot CDROM,
boot, and figure out what is wrong.

Restoring a Server

Above, we considered how to recover a client machine where a valid Bacula server was running on another
machine. However, what happens if your server goes down and you no longer have a running Director, Catalog,
or Storage daemon? There are several solutions:

Bring up static versions of your Director, Catalog, and Storage daemon.1.
Move your server to another machine.2.

The first option, is very difficult because it requires you to have created a static version of the Director and the
Storage daemon as well as the Catalog. If the Catalog uses MySQL or PostgreSQL, this may or may not be
possible. In addition, to loading all these programs on a bare system (quite possible), you will need to make sure
you have a valid driver for your tape drive.

The second suggestion is probably a much simpler solution, and one I have done myself. To do so, you might
want to consider the following steps:

Bacula Storage Management System

Final Step 335

If you are using MySQL or PostgreSQL, configure, build and install it from source (or user rpms) on
your new system.

•

Load the Bacula source code onto your new system, configure, install it, and create the Bacula database.•
If you have a valid saved Bootstrap file as created for your damaged machine with WriteBootstrap, use it
to restore the files to the damaged machine, where you have loaded a static Bacula File daemon using the
Bacula Rescue disk). This is done by using the restore command and at the yes/mod/no prompt, selecting
mod then specifying the path to the bootstrap file.

•

If you have the Bootstrap file, you should now be back up and running, if you do not have a Bootstrap
file, continue with the suggestions below.

•

Using bscan scan the last set of backup tapes into your MySQL, PostgreSQL or SQLite database.•
Start Bacula, and using the Console restore command, restore the last valid copy of the Bacula database
and the the Bacula configuration files.

•

Move the database to the correct location.•
Start the database, and restart Bacula. Then use the Console restore command, restore all the files on the
damaged machine, where you have loaded a Bacula File daemon using the Bacula Rescue disk.

•

Linux Problems or Bugs

Since every flavor and every release of Linux is different, there are likely to be some small difficulties with the
scripts, so please be prepared to edit them in a minimal environment. A rudimentary knowledge of vi is very
useful. Also, these scripts do not do everything. You will need to reformat Windows partitions by hand, for
example.

Getting the boot loader back can be a problem if you are using grub because it is so complicated. If all else fails,
reboot your system from your floppy but using the restored disk image, then proceed to a reinstallation of grub
(looking at the run−grub script can help). By contrast, lilo is a piece of cake.

FreeBSD Bare Metal Recovery

The same basic techniques described above also apply to FreeBSD. Although we don't yet have a fully automated
procedure, Alex Torres Molina has provided us with the following instructions with a few additions from Jesse
Guardiani and Dan Languille:

Boot with the FreeBSD installation disk1.
Go to Custom, Partition and create your slices and go to Label and create the particions that you want.
Apply changes.

2.

Go to Fixit to start a emergency console.3.
Create devs ad0 if don't exist under /mnt2/dev (in my situation) with MAKEDEV. The device or
devices you create depend on what hard drives you have. ad0 is your first ATA drive. da0 would by your
first SCSI drive. Under OS version 5 and greater, your device files are most likely automatically created
for you.

4.

mkdir /mnt/disk
this is the root of the new disk

5.

mount /mnt2/dev/ad0s1a /mnt/disk
mount /mnt2/dev/ad0s1c /mnt/disk/var
mount /mnt2/dev/ad0s1d /mnt/disk/usr
.....
The same hard drive isssues as above apply here too. Note, under OS version 5 or higher, your disk
devices may be in /dev not /mnt2/dev.

6.

Bacula Storage Management System

Linux Problems or Bugs 336

Network configuraion (ifconfig xl0 ip/mask + route add default ip−gateway)7.
mkdir /mnt/disk/tmp8.
cd /mnt/disk/tmp9.
Copy bacula−fd and bacula−fd.conf to this path10.
If you need to use sftp to copy files then you must do this:
ln −s /mnt2/usr/bin /usr/bin

11.

chmod u+x bacula−fd12.
Modify bacula−fd.conf to fit this machine13.
Copy /bin/sh to /mnt/disk, neccesary for chroot14.
Don't forget to put your bacula−dir's IP address and domain name in /mnt/disk/etc/hosts if it's not on a
public net. Otherwise the FD on the machine you are restoring to won't be able to contact the SD and
DIR on the remote machine.

15.

mkdir −p /mnt/disk/var/db/bacula16.
chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf
to start bacula−fd

17.

Now you can go to bacula−dir and restore the job with the entire contents of the broken server.18.
You must create /proc19.

Solaris Bare Metal Recovery

The same basic techniques described above apply to Solaris:

the same restrictions as those given for Linux apply•
you will need to create a Bacula Rescue disk•

However, during the recovery phase, the boot and disk preparation procedures are different:

there is no need to create an emergency boot disk since it is an integrated part of the Solaris boot.•
you must partition and format your hard disk by hand following manual procedures as described in W.
Curtis Preston's book "Unix Backup Recovery"

•

Once the disk is partitioned, formatted and mounted, you can continue with bringing up the network and
reloading Bacula.

Preparing Solaris Before a Disaster

As mentioned above, before a disaster strikes, you should prepare the information needed in the case of
problems. To do so, in the rescue/solaris subdirectory enter:

su
./getdiskinfo
./make_rescue_disk

The getdiskinfo script will, as in the case of Linux described above, create a subdirectory diskinfo containing the
output from several system utilities. In addition, it will contain the output from the SysAudit program as
described in Curtis Preston's book. This file diskinfo/sysaudit.bsi will contain the disk partitioning information
that will allow you to manually follow the procedures in the "Unix Backup Recovery" book to repartition and
format your hard disk. In addition, the getdiskinfo script will create a start_network script.

Once you have your your disks repartitioned and formatted, do the following:

Bacula Storage Management System

Solaris Bare Metal Recovery 337

Start Your Network with the start_network script•
Restore the Bacula File daemon as documented above•
Perform a Bacula restore of all your files using the same commands as described above for Linux•
Re−install your boot loader using the instructions outlined in the "Unix Backup Recovery" book using
installboot

•

Bugs and Other Considerations

Directory Modification and Access Times are Modified on pre−1.30 Baculas

When a pre−1.30 version of Bacula restores a directory, it first must create the directory, then it populates the
directory with its files and subdirectories. The act of creating the files and subdirectories updates both the
modification and access times associated with the directory itself. As a consequence, all modification and access
times of all directories will be updated to the time of the restore.

This has been corrected in Bacula version 1.30 and later. The directory modification and access times is reset to
the value saved in the backup after all the files and subdirectories have been restored. This has been tested and
verified on normal restore operations, but not verified during a bare metal recovery.

Strange Bootstrap Files

If any of you look closely at the bootstrap file that is produced and used for the restore (I sure do), you will
probably notice that the FileIndex item does not include all the files saved to the tape. This is because in some
instances there are duplicates (especially in the case of an Incremental save), and in such circumstances, Bacula
restores only the last of multiple copies of a file or directory.

Disaster Recovery of Win32 Systems

Due to open system files, and registry problems, Bacula cannot save and restore a complete Win2K/XP/NT
environment.

A suggestion by Damian Coutts using Microsoft's NTBackup utility in conjunction with Bacula should permit a
Full bare metal restore of Win2K/XP (and possibly NT systems). His suggestion is to do an NTBackup of the
critical system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the system state and not all the user files, and
the /F c:\systemstate.bkf specifies where to write the state file. this file must then be saved and restored by
Bacula.

To restore the system state, you first reload a base operating system, then you would use Bacula to restore all the
users files and to recover the c:\systemstate.bkf file, and finally, run NTBackup and catalogue the system
statefile, and then select it for restore. The documentation says you can't run a command line restore of the
systemstate.

This procedure has been confirmed to work by Ludovic Strappazon −− many thanks!

Bacula Storage Management System

Bugs and Other Considerations 338

Resetting Directory and File Ownership and Permissions on
Win32 Systems

Bacula versions after 1.31 should properly restore ownership and permissions on all WinNT/XP/2K systems. If
you do experience problems, generally in restores to alternate directories because higher level directories were
not backed up by Bacula, you can correct any problems with the SetACL available under the GPL license at:
http://sourceforge.net/projects/setacl/.

Alternate Disaster Recovery Suggestion for Win32 Systems

Ludovic Strappazon has suggested an interesting way to backup and restore complete Win32 partitions. Simply
boot your Win32 system with a Linux Rescue disk as described above for Linux, install a statically linked
Bacula, and backup any of the raw partitions you want. Then to restore the system, you simply restore the raw
partition or partitions. Here is the email that Ludovic recently sent on that subject:

I've just finished testing my brand new cd LFS/Bacula
with a raw Bacula backup and restore of my portable.

I can't resist sending you the results: look at the rates !!!

hunt−dir: Start Backup JobId 100, Job=HuntBackup.2003−04−17_12.58.26
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:14
JobId: 100
Job: HuntBackup.2003−04−17_12.58.26
FileSet: RawPartition
Backup Level: Full
Client: sauvegarde−fd
Start time: 17−Apr−2003 12:58
End time: 17−Apr−2003 13:14
Files Written: 1
Bytes Written: 10,058,586,272
Rate: 10734.9 KB/s
Software Compression: None
Volume names(s): 000103
Volume Session Id: 2
Volume Session Time: 1050576790
Last Volume Bytes: 10,080,883,520
FD termination status: OK
SD termination status: OK
Termination: Backup OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

hunt−dir: Start Restore Job RestoreFilesHunt.2003−04−17_13.21.44
hunt−sd: Forward spacing to file 1.
hunt−dir: Bacula 1.30 (14Apr03): 17−Apr−2003 13:54
JobId: 101
Job: RestoreFilesHunt.2003−04−17_13.21.44
Client: sauvegarde−fd
Start time: 17−Apr−2003 13:21
End time: 17−Apr−2003 13:54

Bacula Storage Management System

Resetting Directory and File Ownership and Permissions on Win32 Systems 339

http://sourceforge.net/projects/setacl/

Files Restored: 1
Bytes Restored: 10,056,130,560
Rate: 5073.7 KB/s
FD termination status: OK
Termination: Restore OK

hunt−dir: Begin pruning Jobs.
hunt−dir: No Jobs found to prune.
hunt−dir: Begin pruning Files.
hunt−dir: No Files found to prune.
hunt−dir: End auto prune.

Restoring to a Running System

If for some reason you want to do a Full restore to a system that has a working kernel, you will need to take care
not to overwrite the following files:

/etc/grub.conf
/etc/X11/Conf
/etc/fstab
/etc/mtab
/lib/modules
/usr/modules
/usr/X11R6
/etc/modules.conf

Additional Resources

Many thanks to Charles Curley who wrote Linux Complete Backup and Recovery HOWTO for the The Linux
Documentation Project. This is an excellent document on how to do Bare Metal Recovery on Linux systems, and
it was this document that made me realize that Bacula could do the same thing.

You can find quite a few additional resources, both commercial and free at Storage Mountain, formerly known as
Backup Central.

And finally, the O'Reilly book, "Unix Backup Recovery" by W. Curtis Preston covers virtually every backup and
recovery topic including bare metal recovery for a large range of Unix systems.

The Windows Version of Bacula Index Disaster Recovery Using a Bacula Rescue
Floppy

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

Restoring to a Running System 340

http://www.tldp.org/HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO/index.html
http://www.tldp.org/
http://www.tldp.org/
http://www.backupcentral.com
http://www.bacula.org/

Bacula 1.36 User's Guide

Disaster Recovery Using a Bacula Rescue
CDROM

Index Using stunnel to Encrypt Communcations to
Your Clients

Bacula Storage Management System

Restoring to a Running System 341

Disaster Recovery Using a Bacula Rescue Floppy

General

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise the work of
recovering your system and your files will be considerably greater. For example, if you have not previously
saved the partitioning information for your hard disk, how can you properly rebuild it if the disk must be
replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very operating system
dependent. As a consequence, this chapter will discuss in detail disaster recovery (also called Bare Metal
Recovery) for Linux and Solaris. For Solaris, the procedures are still quite manual. For FreeBSD the same
procedures may be used but they are not yet developed. For Win32, no luck. Apparently an "emergency boot"
disk allowing access to the full system API without interference does not exist.

Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into account before a
disaster strikes.

If the building which houses your computers burns down or is otherwise destroyed, do you have off−site
backup data?

•

Disaster recovery is much easier if you have several machines. If you have a single machine, how will
you handle unforeseen events if your only machine is down?

•

Do you want to protect your whole system and use Bacula to recover everything? or do you want to try to
restore your system from the original installation disks and apply any other updates and only restore user
files?

•

Steps to Take Before Disaster Strikes

Create a Bacula Rescue floppy for each of your Linux systems.•
Ensure that you always have a valid bootstrap file that is saved to an alternate machine.•
If possible copy your catalog nightly to an alternate machine. If you have a valid bootstrap file, this is not
necessary, but can be very useful if you do not want to reload everything. .

•

Test using the Bacula Rescue floppy before you are forced to use it in an emergency situation.•

Bare Metal Floppy Recovery on Linux with a Bacula Floppy
Rescue Disk

Since floppies are being used less and less, the Bacula Floppy rescue disk is deprecated, which means that it is no
longer really supported. For those of you who have or need floppy rescue, we include the recovery instructions
here for your reference.

The remainder of this section concerns recovering a Linux computer using a floppy, and parts of it relate to the
Red Hat version of Linux.

Disaster Recovery Using a Bacula Rescue Floppy 342

A so called "Bare Metal" recovery is one where you start with an empty hard disk and you restore your machine.
There are also cases where you may lose a file or a directory and want it restored. Please see the previous chapter
for more details for those cases.

Bare Metal Recovery assumes that you have the following four items for your system:

An emergency boot disk allowing you to boot without a hard disk•
A Bacula Rescue floppy containing your disk information and a number of helpful scripts (described
below) including a statically linked version of the Bacula File daemon

•

A full Bacula backup of your system possibly including Incremental or Differential backups since the last
Full backup

•

A second system running the Bacula Director, the Catalog, and the Storage daemon. (this is not an
absolute requirement, but how to get around it is not yet documented here)

•

Restrictions

In addition, to the above assumptions, the following conditions or restrictions apply:

Linux only −− tested only on Red Hat, but should work on other Linuxes•
The scripts handle only SCSI and IDE disks•
All partitions will be recreated, but only ext2, ext3, and swap partitions will be reformatted. Any other
partitions such as Windows FAT partitions will not be formatted by the scripts, but you can do it by hand

•

You are using either lilo or grub as a boot loader, and you know which one (not automatically detected)•
The partitioning and reformating scripts will *should* work with RAID devices, but probably not with
other "complicated" disk partitioning/formating schemes. Please check them carefully. You will probably
need to edit the scripts by hand to make them work.

•

Directories

If you are building a self−contained Bacula Rescue CDROM, you will find the necessary scripts in
rescule/linux/cdrom subdirectory of the Bacula source code.

If you wish to build the Bacula Rescue floppy disk, the scripts discussed below can be found in the
rescue/linux/floppy subdirectory of the Bacula source code.

Preparation for a Bare Metal Recovery

There are two things you should do immediately on all (Linux) systems for which you wish to do a bare metal
recovery:

Create a system emergency boot disk or alternatively a system installation boot floppy. This step can be
skipped if you have an Installation CDROM and your machine will boot from CDROM (most modern
computers will).

1.

Create a Bacula Rescue floppy, which captures the current working state of your computer and creates
scripts to restore it. In addition, it creates a statically linked version of the Bacula File daemon (Client)
program, which is key to successfully restoring from scratch.

2.

Bacula Storage Management System

Restrictions 343

Creating an Emergency Boot Disk

Here you have several choices:

Create a tomsrtbt disk (any Linux)•
Create an emergency boot disk (any Linux I think)•
Create a Red Hat Installation disk (Red Hat specific)•
Others•

tomsrtbt

If you have created a Bacula Rescue CDROM, you can skip this section.

If you *must* use a boot floppy, my preference is to create and use a tomsrtbt emergency boot disk because it
gives you a very clean Linux environment (with a 2.2 kernel) and the most utilities. See http://www.toms.net/rb/
for more details on this. It is very easy to do and well worth the effort. However, I recommend that you create
both especially if you have non−standard hardware. You may find that tomsrtbt will not work with your network
driver (he surely has one, but you must explicitly put it on the disk), whereas the Linux rescue is more likely to
work.

Emergency Boot Disk

If you have created a Bacula Rescue CDROM, you can skip this section.

To create a standard Linux emergency boot disk you must first know the name of the kernel, which you can find
with:

 ls −l /boot

and looking on the vmlinux−... line or alternative do an

 uname −a

then become root and with a blank floppy in the drive, enter the following command:

 mkbootdisk −−device /dev/fd0 2.4.18−18

where you replace "2.4.18−18" by your system name.

This disk can then be booted and you will be in an environment with a number of important tools available. Some
disadvantages of this environment as opposed to tomsrtbt are that you must enter linux rescue at the boot
prompt or the boot will fail without a hard disk; it requires a disk boot image or a CDROM to be mounted, if the
CDROM is released, you will loose a large number of the tools.

Red Hat Installation Disk

If you have created a Bacula Rescue CDROM, you can skip this section.

Specific to Red Hat Linux, is to create an Installation floppy, which can also be used as an emergency boot disk.
The advantage of this method is that it works in conjunction with the installation CDROM and hence during the
first part of restoring the system, you have a much larger number of tools available (on the CDROM). This can be

Bacula Storage Management System

Creating an Emergency Boot Disk 344

http://www.toms.net/rb/

extremely useful if you are not sure what really happened and you need to examine your system in detail.

To make a Red Hat Linux installation disk, do the following:

mount the Installation CDROM (/mnt/cdrom)
cd /mnt/cdrom/images
dd if=boot.img of=/dev/fd0 bs=1440k

Now that you have either an emergency boot disk or an installation floppy, you will be able to reboot your
system in the absence of your hard disk or with a damaged hard disk. This method has the same disadvantages
compared to tomsrtbt disk as mentioned above for the Emergency Boot Disk.

Creating a Bacula Rescue Disk

If you have created a Bacula Rescue CDROM, this step will be automatically done for you.

Simply having a boot disk is not sufficient to re−create things as they were. To solve this problem, we will create
a Bacula Rescue disk. Everything that will be written to this disk will first be placed into the
<bacula−src>/rescue/linux directory.

The first step is while your system is up and running normally, you use a Bacula script called getdiskinfo to
capture certain important information about your hard disk configuration (partitioning, formatting, mount points,
...). getdiskinfo will also create a number of scripts using the information found that can be used in an emergency
to repartition your disks, reformat them, and restore a statically linked version of the Bacula file daemon so that
your disk can be restored from within a minimal boot environment.

The first step is to run getdiskinfo as follows:

 su
 cd <bacula−src>/rescue/linux
 ./getdiskinfo

getdiskinfo works for either IDE or SCSI drives and recognizes both ext2 and ext3 file systems. If you wish to
restore other file systems, you will need to modify the code. This script can be run multiple times, but really only
needs to be run once unless you change your hard disk configuration.

Assuming you have a single hard disk on device /dev/hda, getdiskinfo will create the following files:

partition.hda
This file contains the shell commands to repartition your hard disk drive /dev/hda to the current state. If
you have additional drives (e.g. /dev/hdc), you will find one of these files for each drive. DO NOT
EXECUTE THIS SCRIPT UNLESS YOU WANT YOUR HARD DISK REPARTITIONED

format.hda
This file contains the shell commands that will format each of the partitions on your hard drive. It knows
about ext2, ext3, and swap partitions. All other partitions, you must manually format. It is recommended
that any Microsoft partitions be partitioned with Microsoft's format command rather than using Unix
tools. DO NOT EXECUTE THIS SCRIPT UNLESS YOU WANT YOUR HARD DISK
REFORMATTED

mount_drives
This script will mount all ext2 and ext3 drives that were previously mounted. They will be mounted on
/mnt/drive/. This is used just before running the statically linked Bacula so that it can access your drives
for the restore.

Bacula Storage Management System

Creating a Bacula Rescue Disk 345

restore_bacula
This script will restore the File daemon from the Bacula Rescue disk. Building the Bacula Rescue disk
will be described later. This will provide your emergency boot environment with a Bacula file daemon.
Note, this is a special statically linked version of the file daemon (i.e. it does not need or use shared
libraries).

start_network
This script will start your network using the simplest possible commands. You will need to verify that the
IP address used in this script is correct. In addition, if you have several ethernet cards, you may need to
make other modifications to this script.

sfdisk
This is the program that will repartition your hard disk, and it is normally found in /sbin/sfdisk. It is
placed in this directory so that it will be included on the rescue disk as it is not normally available with
all emergency boot environments.

sfdisk.gz
This is the version of sfdisk that works with tomsrtbt. The standard sfdisk described above will not run
under tomsrtbt.

The getdiskinfo program (actually a shell script) will also create a subdirectory named diskinfo, which contains
the following files:

df.bsi
disks.bsi
fstab.bsi
ifconfig.bsi
mount.bsi
mount.ext2.bsi
mount.ext3.bsi
mtab.bsi
route.bsi
sfdisk.disks.bsi
sfdisk.hda.bsi
sfdisk.make.hda.bsi

Each of these files contains some important piece of information (sometimes redundant) about your hard disk
setup or your network. Normally, you will not need this information, but it will be written to the Bacula Rescue
disk just in case. Since it is normally not used, we will leave it to you to examine those files at your leisure.

Building a Static File Daemon

If you have created a Bacula Rescue CDROM, this step will be automatically done for you.

The second of the three steps in creating your Bacula Rescue disk is to build a static version of the File daemon.
Do so by either configuring Bacula as follows or by allowing the make_rescue_disk script described below
make it for you:

cd <bacula−src>
./configure <normal−options>
make
cd src/filed
make static−bacula−fd
strip static−bacula−fd
cp static−bacula−fd ../../rescue/linux/bacula−fd
cp bacula−fd.conf ../../rescue/linux

Bacula Storage Management System

Building a Static File Daemon 346

Note, above, we built static−bacula−fd and changed its name to bacula−fd when copying it to the rescue/linux
directory.

Finally, in <bacula−src>/rescue/linux, ensure that the WorkingDirectory and PIDDirectory both point to
reasonable locations on a stripped down system. If you are using tomsrtbt you will also want to replace machine
names with IP addresses since there is no resolver running. With the Linux Rescue disk, network address
mapping seems to work. Don't forget that at the time this version of the Bacula File daemon runs, your file
system will not be restored. In my bacula−fd.conf, I use /var/working.

Writing the Bacula Rescue Floppy

When you have everything you need (output of getdiskinfo, Bacula File daemon, ...), you create your rescue
floppy by putting a blank tape into your floppy disk drive and entering:

su
./make_rescue_disk

This script will reformat the floppy and write everything in the current directory and all files in the diskinfo
directory to the floppy. If you supply the appropriate command line options, it will also build a static version of
the Bacula file daemon and copy it along with the configuration file to the disk. Also using a command line
option, you can make it write a compressed tar file containing all the files whose names are in backup.etc.list to
the floppy. The list as provided contains names of files in /etc that you might need in a disaster situation. It is not
needed, but in some cases such as a complex network setup, you may find it useful.

Options for make_rescue_disk

The following command line options are available for the make_rescue_disk script:

Usage: make_rescue_disk
 −h, −−help print this message
 −−make−static−bacula make static File daemon and add to diskette
 −−copy−static−bacula copy static File daemon to diskette
 −−copy−etc−files copy files in etc list to diskette

Briefly the options are:

−−make−static−bacula
If this option is specified, the script will assume that you have already configured and built Bacula. It will
then proceed to build a statically linked version and copy it along with bacula−fd.conf to the current
directory, then write it to the rescue disk.

−−copy−static−bacula,/dt>
If this option is given, the script will assume that you already have a copy of the statically linked Bacula
in the current directory named bacula−fd as well as the configuration script. They will then be written to
the rescue disk.

−−copy−etc−files
If this option is specified, the script will tar the files in backup.etc.list and write them to the rescue disk.

Please examine the contents of the rescue floppy to ensure that it has everything you want and need. If not
modify the scripts as necessary and re−run it until it is correct.

Now that you have both a system boot floppy and a Bacula Rescue floppy, assuming you have a full backup of
your system made by Bacula, you are ready to handle nearly any kind of emergency restoration situation.

Bacula Storage Management System

Writing the Bacula Rescue Floppy 347

Restoring Your Linux Client with a Floppy

Now, let's assume that your hard disk has just died and that you have replaced it with an new identical drive. In
addition, we assume that you have:

A recent Bacula backup (Full plus Incrementals)1.
An emergency boot floppy (preferably tomsrtbt)2.
A Bacula Rescue Floppy Disk3.
Your Bacula Director, Catalog, and Storage daemon running on another machine on your local network.4.

This is a relatively simple case, and later in this chapter, as time permits, we will discuss how you might recover
from a situation where the machine that crashes is your main Bacula server (i.e. has the Director, the Catalog, and
the Storage daemon).

You will take the following steps to get your system back up and running:

Boot with your Emergency Floppy1.
Mount your Bacula Rescue floppy2.
Start the Network (local network)3.
Re−partition your hard disk(s) as it was before4.
Re−format your partitions5.
Restore the Bacula File daemon (static version)6.
Perform a Bacula restore of all your files7.
Re−install your boot loader8.
Reboot9.

Now for the details ...

Boot with your Emergency Floppy

First you will boot with your emergency floppy. If you use the Installation floppy described above, when you get
to the boot prompt:

boot:

you enter linux rescue.

If you are booting from tomsrtbt simply enter the default responses.

When your machine finishes booting, you should be at the command prompt possibly with your hard disk
mounted on /mount/sysimage (Linux emergency only). To see what is actually mounted, use:

df

Mount your Bacula Rescue Floppy

Make sure that the mount point /mnt/floppy exists. If not, enter:

mkdir −p /mnt/floppy

the mount your Bacula Rescue disk and cd to it with:

Bacula Storage Management System

Restoring Your Linux Client with a Floppy 348

mount /dev/fd0 /mnt/floppy
cd /mnt/floppy

To simplify running the scripts make sure the current directory is on your path by:

PATH=$PATH:.

Start the Network

At this point, you should bring up your network. Normally, this is quite simple and requires just a few
commands. If you have booted from your Bacula Rescue CDROM, please cd into the /bacula−hostname
directory before continuing. To simplify your task, we have created a script that should work in most cases by
typing:

./start_network

You can test it by pinging another machine, or pinging your broken machine machine from another machine. Do
not proceed until your network is up.

Unmount Your Hard Disk (if mounted)

When you are sure you want to repartition your disk, normally, if your disk was damaged or if you are using
tomsrtbt your hard disk will not be mounted. However, if it is you must first unmount it so that it is not in use.
Do so by entering df and then enter the correct commands to unmount the disks. For example:

umount /mnt/sysimage/boot
umount /mnt/sysimage/usr
umount /mnt/sysimage/proc
umount /mnt/sysimage/

where you explicitly unmount (umount) each sysimage partition and finally, the last one being the root. Do
another df command to be sure you successfully unmount all the sysimage partitions.

This is necessary because sfdisk will refuse to partition a disk that is currently mounted. As mentioned, this
should never be necessary with tomsrtbt.

Partition Your Hard Disk(s)

If you are using tomsrtbt, you will need to do the following steps to get the correct sfdisk:

rm −f sfdisk
bzip2 −d sfdisk.bz2

Do not do the above steps if you are using a standard Linux boot disk or the Bacula Rescue CDROM.

Then proceed with partitioning your hard disk by:

./partition.hda

If you have multiple disks, do the same for each of them. For SCSI disks, the repartition script will be named:
partition.sda. If the script complains about the disk being in use, simply go back and redo the df command and
umount commands until you no longer have your hard disk mounted. Note, in many cases, if your hard disk was
seriously damaged or a new one installed, it will not automatically be mounted. If it is mounted, it is because the

Bacula Storage Management System

Start the Network 349

emergency kernel found one or more possibly valid partitions.

If for some reason this procedure does not work, you can use the information in partition.hda to re−partition
your disks by hand using fdisk.

Format Your Hard Disk(s)

After partitioning your disk, you must format it appropriately. The formatting script will put back swap
partitions, normal Unix partitions (ext2) and journaled partitions (ext3). Do so by entering for each disk:

./format.hda

The format script will ask you if you want a block check done. We recommend to answer yes, but realize that for
very large disks this can take hours.

Mount the Newly Formatted Disks

Once the disks are partitioned and formatted, you can remount them with the mount_drives script. All your
drives must be mounted for Bacula to be able to access them. Run the script as follows:

./mount_drives
df

The df will tell you if the drives are mounted. If not, re−run the script again. It isn't always easy to figure out and
create the mount points and the mounts in the proper order, so repeating the ./mount_drives command will not
cause any harm and will most likely work the second time. If not, correct it by hand before continuing.

Unmount the CDROM

Next, if you are using the Red Hat installation disk, unmount the CDROM drive by doing:

umount /mnt/cdrom

This is not necessary if you are running tomsrtbt. In doing this, I find it is always busy, and I haven't figured out
how to unmount it (Linux boot only).

Restore and Start the File Daemon

If you have booted with a Bacula Rescue CDROM, your statically linked Bacula File daemon and the
bacula−fd.conf file with be in the /bacula−hostname/bin directory. Please skip the following paragraph and
continue with editing the Bacula configuration file.

If you have not used a Bacula Rescue CDROM, now change (cd) to some directory where you want to put the
image of the Bacula File daemon. I use the tmp directory my hard disk (mounted as /mnt/disk/tmp) because it is
easy. Then install into the current directory Bacula by running the restore_bacula script from the floppy drive.
For example:

cd /mnt/disk
mkdir −p /mnt/disk/tmp
mkdir −p /mnt/disk/tmp/working
/mnt/floppy/restore_bacula
ls −l

Bacula Storage Management System

Format Your Hard Disk(s) 350

Make sure bacula−fd and bacula−fd.conf are both there.

Edit the Bacula configuration file, create the working/pid/subsys directory if you haven't already done so above,
and start Bacula by entering:

chroot /mnt/disk /tmp/bacula−fd −c /tmp/bacula−fd.conf

The above command starts the Bacula File daemon with your the proper root disk location (i.e. /mnt/disk/tmp. If
Bacula does not start correct the problem and start it. You can check if it is running by entering:

ps fax

You can kill Bacula by entering:

kill −TERM <pid>

where pid is the first number printed in front of the first occurrence of bacula−fd in the ps fax command.

Now, you should be able to use another computer with Bacula installed to check the status by entering:

status client=xxxx

into the Console program, where xxxx is the name of the client you are restoring.

One common problem is that your bacula−dir.conf may contain machine addresses that are not properly
resolved on the stripped down system to be restored because it is not running DNS. This is particularly true for
the address in the Storage resource of the Director, which may be very well resolved on the Director's machine,
but not on the machine being restored and running the File daemon. In that case, be prepared to edit
bacula−dir.conf to replace the name of the Storage daemon's domain name with its IP address.

Restoring using the RedHat Installation Disk

Suppose your system was damaged for one reason or another, so that the hard disk and the partitioning and much
of the filesystems are intact, but you want to do a full restore. If you have booted into your system with the
RedHat Installation Disk by specifying linux rescue at the boot: prompt, you will find yourself in a shell
command with your disks already mounted (if it was possible) in /mnt/sysimage. In this case, you can do much
like you did above to restore your system:

cd /mnt/sysimage/tmp
mkdir −p /mnt/sysimage/tmp/working
/mnt/floppy/restore_bacula
ls −l

Make sure that bacula−fd and bacula−fd.conf are both in the current directory and that the directory names in
the bacula−fd.conf correctly point to the appropriate directories. Then start Bacula with:

chroot /mnt/sysimage /tmp/bacula−fd −c /tmp/bacula−fd.conf

Restore Your Files

On the computer that is running the Director, you now run a restore command and select the files to be restored
(normally everything), but before starting the restore, there is one final change you must make using the mod

Bacula Storage Management System

Restoring using the RedHat Installation Disk 351

option. You must change the Where directory to be the root by using the mod option just before running the job
and selecting Where. Set it to:

/

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly and then using a Where to specify a
destination of /mnt/disk. This is possible, however, the current version of Bacula always restores files to the new
location, and thus any soft links that have been specified with absolute paths will end up with /mnt/disk prefixed
to them. In general this is not fatal to getting your system running, but be aware that you will have to fix these
links if you do not use chroot.

Final Step

At this point, the restore should have finished with no errors, and all your files will be restored. One last task
remains and that is to write a new boot sector so that your machine will boot. For lilo, you enter the following
command:

run_lilo

If you are using grub instead of lilo, you must enter the following:

run_grub

Note, I've had quite a number of problems with grub because it is rather complicated and not designed to install
easily under a simplified system. So, if you experience errors or end up unexpectedly in a chroot shell, simply
exit back to the normal shell and type in the appropriate commands from the run_grub script by hand until you
get it to install.

Reboot

Reboot your machine by entering exit until you get to the main prompt then enter ctl−d.

If everything went well, you should now be back up and running. If not, re−insert the emergency boot floppy,
boot, and figure out what is wrong.

At this point, you will probably want to remove the temporary copy of Bacula that you installed. Do so with:

rm −f /bacula−fd /bacula−fd.conf
rm −rf /working

Linux Problems or Bugs

Since every flavor and every release of Linux is different, there are likely to be some small difficulties with the
scripts, so please be prepared to edit them in a minimal environment. A rudimentary knowledge of vi is very
useful. Also, these scripts do not do everything. You will need to reformat Windows partitions by hand, for
example.

Bacula Storage Management System

Final Step 352

Getting the boot loader back can be a problem if you are using grub because it is so complicated. If all else fails,
reboot your system from your floppy but using the restored disk image, then proceed to a reinstallation of grub
(looking at the run−grub script can help). By contrast, lilo is a piece of cake.

Bugs

When performing the bare metal recovery using the Red Hat emergency boot disk (actually the installation boot
disk), I was never able to release the cdrom, and when the system came up /mnt/cdrom was soft linked to
/mnt/disk/dev/hdd, which is not correct. I fixed this in each case by deleting and simply remaking it with mkdir
−p /mnt/cdrom.

tomsrtbt

This is a single floppy (1.722Meg) that really has A LOT of software. For example, by default (version 2.0.103)
you get:

AHA152X AHA1542 AIC7XXX BUSLOGIC DAC960 DEC_ELCP(TULIP) EATA EEXPRESS/PRO/PRO100
EL2 EL3 EXT2 EXT3 FAT FD IDE−CD/DISK/TAPE IMM INITRD ISO9660 JOLIET LOOP
MATH_EMULATION MINIX MSDOS NCR53C8XX NE2000 NFS NTFS PARPORT PCINE2K PCNET32
PLIP PPA RTL8139 SD SERIAL/_CONSOLE SLIP SMC_ULTRA SR ST VFAT VID_SELECT VORTEX
WD80x3 .exrc 3c589_cs agetty ash badblocks basename boot.b buildit.s busybox bz2bzImage bzip2 cardmgr
cardmgr.pid cat chain.b chattr chgrp chmod chown chroot clear clone.s cmp common config cp cpio cs cut date
dd dd−lfs debugfs ddate df dhcpcd−− dirname dmesg domainname ds du dumpe2fs e2fsck echo egrep elvis ex
false fdflush fdformat fdisk filesize find findsuper fmt fstab grep group gunzip gzip halt head hexdump hexedit
host.conf hostname hosts httpd i82365 ifconfig ile init inittab insmod install.s issue kernel key.lst kill killall
killall5 ld ld−linux length less libc libcom_err libe2p libext2fs libtermcap libuuid lilo lilo.conf ln loadkmap login
ls lsattr lsmod lua luasocket man map md5sum miterm mkdir mkdosfs mke2fs mkfifo mkfs.minix mknod
mkswap more more.help mount mt mtab mv nc necho network networks nmclan_cs nslookup passwd pax
pcmcia_core pcnet_cs pidof ping poweroff printf profile protocols ps pwd rc.0 rc.S rc.custom rc.custom.gz
rc.pcmcia reboot rescuept reset resolv.conf rm rmdir rmmod route rsh rshd script sed serial serial_cs services
setserial settings.s sh shared slattach sleep sln sort split stab strings swapoff swapon sync tail tar tcic tee telnet
telnetd termcap test tomshexd tomsrtbt.FAQ touch traceroute true tune2fs umount undeb−− unpack.s unrpm−−
update utmp vi vi.help view watch wc wget which xargs xirc2ps_cs yecho yes zcat

In addition, at Tom's Web Site, you can find a lot of additional kernel drivers and other software (such as sdisk,
which is used by Bacula.

Building his floppy is a piece of cake. Simply download his .tar.gz file then:

− detar the .tar.gz archive
− become root
− cd to the tomsrtbt−<version> directory
− load a blank floppy with no bad sectors
− ./install.s

Disaster Recovery Using a Bacula Rescue
CDROM

Index Using stunnel to Encrypt Communcations to
Your Clients

Bacula Storage Management System

Bugs 353

http://www.toms.net/rb

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Disaster Recovery Using a Bacula Rescue
Floppy

Index Security Issues

Bacula Storage Management System

Bugs 354

http://www.bacula.org/

Using Bacula to Encrypt Communications to Clients
At the current time, Bacula does not have built−in communications encryption. However, without too much
effort, it is possible to encrypt the communications between any of the daemons. This chapter will show you how
to use stunnel to encrypt communications to your client programs. We assume the Director and the Storage
daemon are running on one machine that will be called server and the Client or File daemon is running on a
different machine called client. Although the details may be slightly different, the same principles apply whether
you are encrypting between Unix, Linux, or Win32 machines. This example was developed between two Linux
machines running stunnel version 4.04−4 on a Red Hat Enterprise 3.0 system.

Communications Ports Used

First, you must know that with the standard Bacula configuration, the Director will contact the File daemon on
port 9102. The File daemon then contacts the Storage daemon using the address and port parameters supplied by
the Director. The standard port used will be 9103. This in the typical server/client view of the world, the File
daemon is a server to the Director (i.e. listens for the Director to contact it), and the Storage daemon is a server to
the File daemon.

Encryption

The encryption is accomplished between the Director and the File daemon by using an stunnel on the Director's
machine (server) to encrypt the data and to contact a stunnel on the File daemon's machine (client), which
decrypts the data and passes it to the client.

Between the File daemon and the Storage daemon, we use an stunnel on the File daemon's machine to encrypt the
data and another stunnel on the Storage daemon's machine to decrypt the data.

As a consequence, there are actually four copies of stunnel running, two on server and two on client. This may
sound a bit complicated, but it really isn't. To accomplish this, we will need to construct four separate conf files
for stunnel, and we will need to make some minor modifications to the Director's conf file. None of the other
conf files need to be changed.

A Picture

Since pictures usually help a lot, here is an overview of what we will be doing. Don't worry about all the details
of the port numbers and such for the moment.

 File daemon (client):

 stunnel−fd1.conf

 |===========|
 Port 29102 >−−−−| Stunnel 1 |−−−−−> Port 9102
 |===========|

 stunnel−fd2.conf

 |===========|
 Port 9103 >−−−−| Stunnel 2 |−−−−−> server:29103
 |===========|

Using Bacula to Encrypt Communications to Clients 355

 Director (server):

 stunnel−dir.conf

 |===========|
 Port 29102 >−−−−| Stunnel 3 |−−−−−> client:29102
 |===========|

 stunnel−sd.conf

 |===========|
 Port 29103 >−−−−| Stunnel 4 |−−−−−> 9103
 |===========|

Certificates

In order for stunnel to function as a server, which it does in our diagram for Stunnel 1 and Stunnel 4, you must
have a certificate and the key. It is possible to keep the two in separate files, but normally, you keep them in one
single .pem file. You may create this certificate yourself in which case, it will be self−signed, or you may have it
signed by a CA.

If you want your clients to verify that the server is in fact valid (Stunnel 2 and Stunnel 3), you will need to have
the server certificates signed by a CA (Certificate Authority), and you will need to have the CA's public
certificate (contains the CA's public key).

Having a CA signed certificate is highly recommended if you are using your client across the Internet, otherwise
you are exposed to the man in the middle attack and hence loss of your data.

See below for how to create a self−signed certificate.

Securing the Data Channel

To simplify things a bit, let's for the moment consider only the data channel. That is the connection between the
File daemon and the Storage daemon, which takes place on port 9103. In fact, in a minimalist solution, this is the
only connection needs to be encrypted, because it is the one that transports your data. The connection between
the Director and the File daemon is simply a control channel used to start the job and get the job status.

Normally the File daemon will contact the Storage daemon on port 9103 (supplied by the Director), so we need a
stunnel that listens on port 9103 on the File daemon's machine, encrypts the data and sends it to the Storage
daemon. This is depicted by Stunnel 2 above. Note that this stunnel is listening on port 9103 and sending to
server:29103. We use port 29103 on the server because if we sent the data to port 9103, it would go directly to
the Storage daemon, which doesn't understand encrypted data. On the server machine, we run Stunnel 4, which
listens on port 29103, decrypts the data and sends it to the Storage daemon, which is listening on port 9103.

Modification of bacula−dir.conf for the Data Channel

The Storage resource of the bacula−dir.conf normally looks something like the following:

Bacula Storage Management System

Certificates 356

Storage {
 Name = File
 Address = server
 SDPort = 9103
 Password = storage_password
 Device = File
 Media Type = File
}

Notice that this is running on the server machine, and it points the File daemon back to server:9103, which is
where our Storage daemon is listening. We modify this to be:

Storage {
 Name = File
 Address = localhost
 SDPort = 9103
 Password = storage_password
 Device = File
 Media Type = File
}

This causes the File daemon to send the data to the stunnel running on localhost (the client machine). We could
have used client as the address as well.

config Files for stunnel to Encrypt the Data Channel

In the diagram above, we see above Stunnel 2 that we stunnel−fd2.conf on client. A pretty much minimal config
file would look like the following:

client = yes
[29103]
accept = localhost:9103
connect = server:29103

The above config file does encrypt the data but it does not require a certificate, so it is subject to the man in the
middle attack. The file I actually used, stunnel−fd2.conf, looked like this:

#
Stunnel conf for Bacula client −> SD
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#
A cert is not mandatory here. If verify=2, a
cert signed by a CA must be specified, and
either CAfile or CApath must point to the CA's
cert
#
cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7
foreground = yes

Bacula Storage Management System

config Files for stunnel to Encrypt the Data Channel 357

[29103]
accept = localhost:9103
connect = server:29103

You will notice that I specified a pid file location because I ran stunnel under my own userid so I could not use
the default, which requires root permission. I also specified a certificate that I have as well as verify level 2 so
that the certificate is required and verified, and I must supply the location of the CA (Certificate Authority)
certificate so that the stunnel certificate can be verified. Finally, you will see that there are two lines commented
out, which when enabled, produce a lot of nice debug info in the command window.

If you do not have a signed certificate (stunnel.pem), you need to delete the cert, CAfile, and verify lines.

Note that the stunnel.pem, is actually a private key and a certificate in a single file. These two can be kept and
specified individually, but keeping them in one file is more convenient.

The config file, stunnel−sd.conf, needed for Stunnel 4 on the server machine is:

#
Bacula stunnel conf for Storage daemon
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#
A cert is mandatory here, it may be self signed
If it is self signed, the client may not use
verify
#
cert = /home/kern/stunnel/stunnel.pem

client = no

debug = 7
foreground = yes

[29103]
accept = 29103
connect = 9103

Starting and Testing the Data Encryption

It will most likely be the simplest to implement the Data Channel encryption in the following order:

Setup and run Bacula backing up some data on your client machine without encryption.•
Stop Bacula.•
Modify the Storage resource in the Director's conf file.•
Start Bacula•
Start stunnel on the server with:•

 stunnel stunnel−sd.conf

Start stunnel on the client with:•

Bacula Storage Management System

Starting and Testing the Data Encryption 358

 stunnel stunnel−fd2.conf

Run a job.•
If it doesn't work, turn debug on in both stunnel conf files, restart the stunnels, rerun the job, repeat until
it works.

•

Encrypting the Control Channel

The Job control channel is between the Director and the File daemon, and as mentioned above, it is not really
necessary to encrypt, but it is good practice to encrypt it as well. The two stunnels that are used in this case will
be Stunnel 1 and Stunnel 3 in the diagram above. Stunnel 3 on the server might normally listen on port 9102, but
if you have a local File daemon, this will not work, so we make it listen on port 29102. It then sends the data to
client:29102. Again we use port 29102 so that the stunnel on the client machine can decrypt the data before
passing it on to port 9102 where the File daemon is listening.

Modification of bacula−dir.conf for the Control Channel

We need to modify the standard Client resource, which would normally look something like:

Client {
 Name = client−fd
 Address = client
 FDPort = 9102
 Catalog = BackupDB
 Password = "xxx"
}

to be:

Client {
 Name = client−fd
 Address = localhost
 FDPort = 29102
 Catalog = BackupDB
 Password = "xxx"
}

This will cause the Director to send the control information to localhost:29102 instead of directly to the client.

config Files for stunnel to Encrypt the Control Channel

The stunnel config file, stunnel−dir.conf, for the Director's machine would look like the following:

#
Bacula stunnel conf for the Directory to contact a client
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#
A cert is not mandatory here. If verify=2, a
cert signed by a CA must be specified, and
either CAfile or CApath must point to the CA's

Bacula Storage Management System

Encrypting the Control Channel 359

cert
#
cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7
foreground = yes

[29102]
accept = localhost:29102
connect = client:29102

and the config file, stunnel−fd1.conf, needed to run stunnel on the Client would be:

#
Bacula stunnel conf for the Directory to contact a client
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#
A cert is not mandatory here. If verify=2, a
cert signed by a CA must be specified, and
either CAfile or CApath must point to the CA's
cert
#
cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7
foreground = yes

[29102]
accept = localhost:29102
connect = client:29102

Starting and Testing the Control Channel

It will most likely be the simplest to implement the Control Channel encryption in the following order:

Stop Bacula.•
Modify the Client resource in the Director's conf file.•
Start Bacula•
Start stunnel on the server with:•

 stunnel stunnel−dir.conf

Start stunnel on the client with:•

 stunnel stunnel−fd1.conf

Bacula Storage Management System

Starting and Testing the Control Channel 360

Run a job.•
If it doesn't work, turn debug on in both stunnel conf files, restart the stunnels, rerun the job, repeat until
it works.

•

Using stunnel to Encrypt to a Second Client

On the client machine, you can just duplicate the setup that you have on the first client file for file and it should
work fine.

In the bacula−dir.conf file, you will want to create a second client pretty much identical to how you did for the
first one, but the port number must be unique. We previously used:

Client {
 Name = client−fd
 Address = localhost
 FDPort = 29102
 Catalog = BackupDB
 Password = "xxx"
}

so for the second client, we will, of course, have a different name, and we will also need a different port.
Remember that we used port 29103 for the Storage daemon, so for the second client, we can use port 29104, and
the Client resource would look like:

Client {
 Name = client2−fd
 Address = localhost
 FDPort = 29104
 Catalog = BackupDB
 Password = "yyy"
}

Now, fortunately, we do not need a third stunnel to on the Director's machine, we can just add the new port to the
config file, stunnel−dir.conf, to make:

#
Bacula stunnel conf for the Directory to contact a client
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#
A cert is not mandatory here. If verify=2, a
cert signed by a CA must be specified, and
either CAfile or CApath must point to the CA's
cert
#
cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7

Bacula Storage Management System

Using stunnel to Encrypt to a Second Client 361

foreground = yes

[29102]
accept = localhost:29102
connect = client:29102

[29104]
accept = localhost:29102
connect = client2:29102

There are no changes necessary to the Storage daemon or the other stunnel so that this new client can talk to our
Storage daemon.

Creating a Self−signed Certificate

You may create a self−signed certificate for use with stunnel that will permit you to make it function, but will
now allow certificate validation. The .pem file containing both the certificate and the key can be made with the
following, which I put in a file named makepem:

#!/bin/sh
#
Simple shell script to make a .pem file that can be used
with stunnel and Bacula
#
OPENSSL=openssl
 umask 77
 PEM1=`/bin/mktemp openssl.XXXXXX`
 PEM2=`/bin/mktemp openssl.XXXXXX`
 ${OPENSSL} req −newkey rsa:1024 −keyout $PEM1 −nodes \
 −x509 −days 365 −out $PEM2
 cat $PEM1 > stunnel.pem
 echo "" >>stunnel.pem
 cat $PEM2 >>stunnel.pem
 rm $PEM1 $PEM2

The above script will ask you a number of questions. You may simply answer each of them by entering a return,
or if you wish you may enter your own data.

Getting a CA Signed Certificate

The process of getting a certificate that is signed by a CA is quite a bit more complicated. You can purchase one
from quite a number of PKI vendors, but that is not at all necessary for use with Bacula. To get a CA signed
certificate, you will either need to find a friend that has setup his own CA or to become a CA yourself, and thus
you can sign all your own certificates. The book OpenSSL by John Viega, Matt Mesier Pravir Chandra from
O'Reilly explains how to do it, or you can read the documentation provided in the Open−source PKI Book project
at Source Forge: http://ospkibook.sourceforge.net/docs/OSPKI−2.4.7/OSPKI−html/ospki−book.htm. Note, this
link may change.

Using ssh to Secure the Communications

Please see the script ssh−tunnel.sh in the examples directory. It was contributed by Stephan Holl.

Bacula Storage Management System

Creating a Self−signed Certificate 362

http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

Disaster Recovery Using a Bacula Rescue
Floppy

Index Security Issues

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Using Stunnel of Comm Encryption Index Firewalls

Bacula Storage Management System

Creating a Self−signed Certificate 363

http://www.bacula.org/

Bacula Security Issues
The Clients (bacula−fd) must run as root to be able to access all the system files.•
It is not necessary to run the Director as root.•
It is not necessary to run the Storage daemon as root, but you must ensure that it can open the tape drives,
which are often restricted to root access by default.

•

You should restrict access to the Bacula configuration files, so that the passwords are not
world−readable. The Bacula daemons are password protected using CRAM−MD5 (i.e. the password is
not sent across the network). This will ensure that not everyone can access the daemons. It is a
reasonably good protection, but can be cracked by experts.

•

If you are using the recommended ports 9101, 9102, and 9103, you will probably want to protect these
ports from external access using a firewall and/or using tcp wrappers (etc/hosts.allow).

•

Currently all data that is sent across the network is unencrypted. As a consequence, unless you use ssh or
stunnel for port forwarding, it is not recommended to do a backup across an insecure network (e.g. the
Internet). In a future version, we plan to have ssl encryption built−in.

•

You should ensure that the Bacula working directories are readable and writable only by the Bacula
daemons.

•

If you are using MySQL it is not necessary for it to run with root permission.•
The default Bacula grant−mysql−permissions script grants all permissions to use the MySQL database
without a password. If you want security, please tighten this up!

•

Don't forget that Bacula is a network program, so anyone anywhere on the network with the console
program and the Director's password can access Bacula and the backed up data.

•

You can restrict what IP addresses Bacula will bind to by using the appropriate DirAddress,
FDAddress, or SDAddress records in the respective daemon configuration files.

•

Configuring and Testing TCP Wrappers with Bacula

TCP Wrappers are implemented if you turn them on when configuring (./configure −−with−libwrap). With this
code enabled, you may control who may access your daemons. This control is done by modifying the file:
/etc/hosts.allow. The program name that Bacula uses when applying these access restrictions is the name you
specify in the daemon configuration file. You must not use the twist option in your /etc/hosts.allow or it will
terminate the Bacula daemon when a connection is refused.

Dan Languille has provided the following information on configuring and testing TCP wrappers with Bacula.

If you read hosts_options(5), you will see an option called twist. This option replaces the current process by an
instance of the specified shell command. Typically, something like this is used:

ALL : ALL \
 : severity auth.info \
 : twist /bin/echo "You are not welcome to use %d from %h."

The libwrap code tries to avoid twist if it runs in a resident process, but that test will not protect the first
hosts_access() call. This will result in the prcess (e.g. bacula−fd, bacula−sd, bacula−dir) being terminated if the
first connection to their port results in the twist option being invoked. The potential, and I stree potential, exists
for an attacker to prevent the daemons from running. This situation is eliminated if your /etc/hosts.allow file
contains an appropriate ruleset. The following example is sufficent:

undef−fd : localhost : allow

Bacula Security Issues 364

undef−sd : localhost : allow
undef−dir : localhost : allow

undef−fd : ALL : deny
undef−sd : ALL : deny
undef−dir : ALL : deny

You must adjust the daemon names to those found in the respective daemon configuration files. In these
examples, the Director is undef− dir, the Storage Daemon is undef−sd, and the File Daemon is undef−fd. Adjust
to suit your situation. The above example rules assume that the SD, FD, and DIR all reside on the same box. If
you have a remote FD client, then the following ruleset on the remote client will suffice:

undef−fd : director.example.org : allow
undef−fd : ALL : deny

where director.example.org is the host which will be contacting the client (ie. the box on which the Bacula
Director daemon runs). The use of "ALL : deny" ensures that the twist option (if present) is not invoked. To
properly test your configuration, start the daemon(s), then attempt to connect from an IP address which should be
able to connect. You should see something like this:

$ telnet undef 9103
Trying 192.168.0.56...
Connected to undef.example.org.
Escape character is '^]'.
Connection closed by foreign host.
$

This is the correct response. If you see this:

$ telnet undef 9103
Trying 192.168.0.56...
Connected to undef.example.org.
Escape character is '^]'.
You are not welcome to use undef−sd from xeon.example.org.
Connection closed by foreign host.
$

then twist has been invoked and your configuration is not correct and you need to add the deny statement. It is
important to note that your testing must include restarting the daemons after each connection attempt. You can
also tcpdchk(8) and tcpdmatch(8) to validate your /etc/hosts.allow rules. Here is a simple test using tcpdmatch:

$ tcpdmatch undef−dir xeon.example.org
warning: undef−dir: no such process name in /etc/inetd.conf
client: hostname xeon.example.org
client: address 192.168.0.18
server: process undef−dir
matched: /etc/hosts.allow line 40
option: allow
access: granted

If you are running Bacula as a standalone daemon, the warning above can be safely ignored. Here is an example
which indicates that your rules are missing a deny statement and the twist option has been invoked.

$ tcpdmatch undef−dir 10.0.0.1
warning: undef−dir: no such process name in /etc/inetd.conf
client: address 10.0.0.1

Bacula Storage Management System

Bacula Security Issues 365

server: process undef−dir
matched: /etc/hosts.allow line 91
option: severity auth.info
option: twist /bin/echo "You are not welcome to use
 undef−dir from 10.0.0.1."
access: delegated

Running as non−root

Security advice from Dan Languille:
It is a good idea to run daemons with the lowest possible privileges. In other words, if you can, don't run
applications as root which do not have to be root. The Storage Daemon and the Director Daemon do not need to
be root. The File Daemon needs to be root in order to access all files on your system. In order to run as non−root,
you need to create a user and a group. Choosing bacula as both the user name and the group name sounds like
a good idea to me.

The FreeBSD port creates this user and group for you (actually, as I write this, the port doesn't do that, but it soon
will). Here is what those entries looked like on my FreeBSD laptop:

bacula:*:1002:1002::0:0:Bacul Daemon:/var/db/bacula:/sbin/nologin

I used vipw to create this entry. I selected a User ID and Group ID of 1002 as they were unused on my system.

I also created a group in /etc/group:

bacula:*:1002:

The bacula user (as opposed to the Bacula daemon) will have a home directory of /var/db/bacula which is
the default location for the Bacula database.

Now that you have both a bacula user and a bacula group, you can secure the bacula home directory by issuing
this command:

chown −R bacula:bacula /var/db/bacula/

This ensures that only the bacula user can access this directory. It also means that if we run the Director and the
Storage daemon as bacula, those daemons also have restricted access. This would not be the case if they were
running as root.

It is important to note that the storage daemon actually needs to be in the operator group for normal access to tape
drives etc (at least on a FreeBSD system, that's how things are set up by default) Such devices are normally
chown root:operator. It is easier and less error prone to make Bacula a member of that group than it is to play

around with system permissions.

Starting the Bacula daemons
To start the bacula daemons on a FreeBSD system, issue the following command:

/usr/local/etc/rc.d/bacula.sh start

To confirm they are all running:

$ ps auwx | grep bacula

Bacula Storage Management System

Running as non−root 366

root 63416 0.0 0.3 2040 1172 ?? Ss 4:09PM 0:00.01
 /usr/local/sbin/bacula−sd −v −c /usr/local/etc/bacula−sd.conf

root 63418 0.0 0.3 1856 1036 ?? Ss 4:09PM 0:00.00
 /usr/local/sbin/bacula−fd −v −c /usr/local/etc/bacula−fd.conf

root 63422 0.0 0.4 2360 1440 ?? Ss 4:09PM 0:00.00
 /usr/local/sbin/bacula−dir −v −c /usr/local/etc/bacula−dir.conf

Using Stunnel of Comm Encryption Index Firewalls

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Security Issues Index Bacula Projects

Bacula Storage Management System

Running as non−root 367

http://www.bacula.org/

Dealing with Firewalls
If you have a firewall or a DMZ installed on your computer, you may experience difficulties contacting one or
more of the Clients to back them up. This is especially true if you are trying to backup a Client across the
Internet.

Technical Details

If you are attempting to do this, the sequence of network events in Bacula to do a backup are the following:

Console −> DIR:9101
DIR −> SD:9103
DIR −> FD:9102
FD −> SD:9103

Where it should be obvious that DIR represents the Director, FD the File daemon or client, and SD the Storage
daemon. The numbers that follow those names are the standard ports used by Bacula, and the −> represents the
left side making a connection to the right side (i.e. the right side is the "server" or is listening on the specified
port), and the left side is the "client" who initiates the conversation.

Note, port 9103 serves both the Director and the File daemon, each having its own independent connection.

If you are running iptables, you might add something like:

−A FW−1−INPUT −m state −−state NEW −m tcp −p tcp −−dport 9101:9103 −j ACCEPT

on your server, and

−A FW−1−INPUT −m state −−state NEW −m tcp −p tcp −−dport 9102 −j ACCEPT

on your client. In both cases, I assume that the machine is allowed to initiate connections on any port. If not, you
will need to allow outgoing connections on ports 9102 and 9103 on your server and 9103 on your client. Thanks
to Raymond Norton for this tip.

A Concrete Example

Jesse Guardiani's solution for his network for this problem, in his own words, is:

My bacula server is on the 192.168.1.0/24 network at IP address 192.168.1.52. For the sake of discussion we will
refer to this network as the 'internal' network because it connects to the internet through a NAT'd firewall. We
will call the network on the public (internet) side of the NAT'd firewall the 'external' network. Also, for the sake
of discussion we will call my bacula server:

 server.int.mydomain.tld

when a fully qualified domain name is required, or simply:

 server

if a hostname is adequate. We will call the various bacula daemons running on the server.int.mydomain.tld

Dealing with Firewalls 368

machine:

 server−fd
 server−sd
 server−dir

In addition, I have two clients that I want to back up with Bacula. The first client is on the internal network. Its
fully qualified domain name is:

 private1.int.mydomain.tld

And its hostname is:

 private1

This machine is a client and therefore runs just one bacula daemon:

 private1−fd

The second client is on the external network. Its fully qualified domain name is:

 public1.mydomain.tld

And its hostname is:

 public1

This machine also runs just one bacula daemon:

 public1−fd

Finally, I have a NAT firewall/gateway with two network interfaces. The first interface is on the internal network
and serves as a gateway to the internet for all the machines attached to the internal network (For example,
server.int.mydomain.tld and private1.int.mydomain.tld). The second interface is on the external (internet)
network. The external interface has been assigned the name:

 firewall.mydomain.tld

Remember:

 *.int.mydomain.tld = internal network
 *.mydomain.tld = external network

The Bacula Configuration Files for the Above

server−sd manages a 4 tape AIT autoloader. All of my backups are written to server−sd. I have just *one* Device
resource in my server−sd.conf file:

Device {
 Name = "autochanger1";
 Media Type = AIT−1;
 Archive Device = /dev/nrsa1;
 Changer Device = /dev/ch0;
 Changer Command = "/usr/local/sbin/chio−bacula %c %o %S %a";

Bacula Storage Management System

The Bacula Configuration Files for the Above 369

 Label Media = yes;
 AutoChanger = yes;
 AutomaticMount = yes; # when device opened, read it
 AlwaysOpen = yes;
 Hardware End of Medium = No
 Fast Forward Space File = No
 BSF at EOM = yes
}

(note, please see the Tape Testing chapter of this manual for important FreeBSD information.) However, I have
two Storage resources in my server−dir.conf file:

Storage {
 Name = "autochanger1−int" # Storage device for backing up
 Address = server.int.mydomain.tld
 SDPort = 9103
 Password = "mysecretpassword"
 Device = "autochanger1"
 Media Type = AIT−1
 Autochanger = yes
}
Storage {
 Name = "autochanger1−ext" # Storage device for backing up
 Address = firewall.mydomain.tld
 SDPort = 9103
 Password = "mysecretpassword"
 Device = "autochanger1"
 Media Type = AIT−1
 Autochanger = yes
}

Note that BOTH of the above server−dir.conf Storage resources use the same 'autochanger1' Device resource
from server−sd.conf.

My backup jobs run consecutively, one after the other, so only one of the above Storage resources is being used
by Bacula file daemons at any given time. I don't know if this would cause problems at a site that runs more than
one backup in parallel to a single tape device.

In addition to the above, I have two Client resources defined in server−dir.conf:

Client {
 Name = private1−fd
 Address = private1.int.mydomain.tld
 FDPort = 9102
 Catalog = MyCatalog
 Password = "mysecretpassword" # password for FileDaemon
}
Client {
 Name = public1−fd
 Address = public1.mydomain.tld
 FDPort = 9102
 Catalog = MyCatalog
 Password = "mysecretpassword" # password for FileDaemon
}

And finally, to tie it all together, I have two Job resources defined in server−dir.conf:

Job {

Bacula Storage Management System

The Bacula Configuration Files for the Above 370

 Name = "Private1−Backup"
 Type = Backup
 Client = private1−fd
 FileSet = "Private1"
 Schedule = "WeeklyCycle"
 Storage = "autochanger1−int"
 Messages = Standard
 Pool = "Weekly"
 Write Bootstrap = "/var/db/bacula/Private1−Backup.bsr"
 Priority = 12
}
Job {
 Name = "Public1−Backup"
 Type = Backup
 Client = public1−fd
 FileSet = "Public1"
 Schedule = "WeeklyCycle"
 Storage = "autochanger1−ext"
 Messages = Standard
 Pool = "Weekly"
 Write Bootstrap = "/var/db/bacula/Public1−Backup.bsr"
 Priority = 13
}

It is important to notice that because the 'Private1−Backup' Job is intended to back up a machine on the internal
network it uses the 'autochanger1−int' Storage resource. On the other hand, the 'Public1−Backup' Job is intended
to back up a machine on the external network, so it uses the 'autochanger1−ext' Storage resource.

I have left the Pool, Catalog, Messages, FileSet, Schedule, and Director resources out of the above
server−dir.conf examples because they are not pertinent to the discussion.

How Does It Work?

If I want to run a backup of private1.int.mydomain.tld and store that backup using server−sd then my
understanding of the order of events is this:

I execute my Bacula 'console' command on server.int.mydomain.tld.1.
console connects to server−dir.2.
I tell console to 'run' backup Job 'Private1−Backup'.3.
console relays this command to server−dir.4.
server−dir connects to private1−fd at private1.int.mydomain.tld:91025.
server−dir tells private1−fd to start sending the files defined in the 'Private1−Backup' Job's FileSet
resource to the Storage resource 'autochanger1−int', which we have defined in server−dir.conf as having
the address:port of server.int.mydomain.tld:9103.

6.

private1−fd connects to server.int.mydomain.tld:9103 and begins sending files.7.

Alternatively, if I want to run a backup of public1.mydomain.tld and store that backup using server−sd then my
understanding of the order of events is this:

I execute my Bacula 'console' command on server.int.mydomain.tld.1.
console connects to server−dir.2.
I tell console to 'run' backup Job 'Public1−Backup'.3.
console relays this command to server−dir.4.
server−dir connects, through the NAT'd firewall, to public1−fd at public1.mydomain.tld:91025.

Bacula Storage Management System

How Does It Work? 371

server−dir tells public1−fd to start sending the files defined in the 'Public1−Backup' Job's FileSet
resource to the Storage resource 'autochanger1−ext', which we have defined in server−dir.conf as having
the address:port of firewall.mydomain.tld:9103.

6.

public1−fd connects to firewall.mydomain.tld:9103 and begins sending files.7.

Important Note

In order for the above 'Public1−Backup' Job to succeed, firewall.mydomain.tld:9103 MUST be forwarded using
the firewall's configuration software to server.int.mydomain.tld:9103. Some firewalls call this 'Server
Publication'. Others may call it 'Port Forwarding'.

Security Issues Index Bacula Projects

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Firewall Issues Index RPM Packaging

Bacula Storage Management System

Important Note 372

http://www.bacula.org/

Using Bacula to Improve Computer Security
Since Bacula maintains a catalog of files, their attributes, and either SHA1 or MD5 signatures, it can be an ideal
tool for improving computer security. This is done by making a snapshot of your system files with a Verify Job
and then checking the current state of your system against the snapshot, on a regular basis (e.g. nightly).

The first step is to set up a Verify Job and to run it with:

Level = InitCatalog

The InitCatalog level tells Bacula simply get the information on the specified files and to put it into the catalog.
That is your database is initialized and no comparison is done. The InitCatalog is normally run one time
manually.

Thereafter, you will run a Verify Job on a daily (or whatever) basis with:

Level = Catalog

The Level = Catalog level tells Bacula to compare the current state of the files on the Client to the last
InitCatalog that is stored in the catalog and to report any differences. See the example below for the format of
the output.

You decide what files you want to form your "snapshot" by specifying them in a FileSet resource, and normally,
they will be system files that do not change, or that only certain features change.

Then you decide what attributes of each file you want compared by specifying comparison options on the
Include statements that you use in the FileSet resource of your Catalog Jobs.

The Details

In the discussion that follows, we will make reference to the Verify Configuration Example that is included
below in the A Verify Configuration Example section. You might want to look it over now to get an idea of
what it does.

The main elements consist of adding a schedule, which will normally be run daily, or perhaps more often. This is
provided by the VerifyCycle Schedule, which runs at 5:05 in the morning every day.

Then you must define a Job, much as is done below. We recommend that the Job name contain the name of your
machine as well as the word Verify or Check. In our example, we named it MatouVerify. This will permit you
to easily identify your job when running it from the Console.

You will notice that most records of the Job are quite standard, but that the FileSet resource contains
verify=pins1 option in addition to the standard signature=SHA1 option. If you don't want SHA1 signature
comparison, and we cannot imagine why not, you can drop the signature=SHA1 and none will be computed nor
stored in the catalog. Or alternatively, you can use verify=pins5 and signature=MD5, which will use the MD5
hash algorithm. The MD5 hash computes faster than SHA1, but is cryptographically less secure.

The verify=pins1 is ignored during the InitCatalog Job, but is used during the subsequent Catalog Jobs to
specify what attributes of the files should be compared to those found in the catalog. pins1 is a reasonable set to
begin with, but you may want to look at the details these and other options. They can be found in the FileSet

Using Bacula to Improve Computer Security 373

Resource section of this manual. Briefly, however, the p of the pins1 tells Verify to compare the permissions
bits, the i is to compare inodes, the n causes comparison of the number of links, the s compares the file size, and
the 1 compares the SHA1 checksums (this requires the signature=SHA1 option to have been set also).

You must also specify the Client and the Catalog resources for your Verify job, but you probably already have
them created for your client and do not need to recreate them, they are included in the example below for
completeness.

As mentioned above, you will need to have a FileSet resource for the Verify job, which will have the additional
verify=pins1 option. You will want to take some care in defining the list of files to be included in your FileSet.
Basically, you will want to include all system (or other) files that should not change on your system. If you select
files, such as log files or mail files, which are constantly changing, your automatic Verify job will be constantly
finding differences. The objective in forming the FileSet is to choose all unchanging important system files. Then
if any of those files has changed, you will be notified, and you can determine if it changed because you loaded a
new package, or because someone has broken into your computer and modified your files. The example below
shows a list of files that I use on my RedHat 7.3 system. Since I didn't spend a lot of time working on it, it
probably is missing a few important files (if you find one, please send it to me). On the other hand, as long as I
don't load any new packages, none of these files change during normal operation of the system.

Running the Verify

The first thing you will want to do is to run an InitCatalog level Verify Job. This will initialize the catalog to
contain the file information that will later be used as a basis for comparisons with the actual file system, thus
allowing you to detect any changes (and possible intrusions into your system).

The easiest way to run the InitCatalog is manually with the console program by simply entering run. You will
be presented with a list of Jobs that can be run, and you will choose the one that corresponds to your Verify Job,
MatouVerify in this example.

The defined Job resources are:
 1: MatouVerify
 2: kernsrestore
 3: Filetest
 4: kernsave
Select Job resource (1−4): 1

Next, the console program will show you the basic parameters of the Job and ask you:

Run Verify job
JobName: MatouVerify
FileSet: Verify Set
Level: Catalog
Client: MatouVerify
Storage: DLTDrive
OK to run? (yes/mod/no): mod

Here, you want to respond mod to modify the parameters because the Level is by default set to Catalog and we
want to run an InitCatalog Job. After responding mod, the console will ask:

Parameters to modify:
 1: Job
 2: Level
 3: FileSet

Bacula Storage Management System

Running the Verify 374

 4: Client
 5: Storage
Select parameter to modify (1−5): 2

you should select number 2 to modify the Level, and it will display:

Levels:
 1: Initialize Catalog
 2: Verify from Catalog
 3: Verify Volume
 4: Verify Volume Data
Select level (1−4): 1

Choose item 1, and you will see the final display:

Run Verify job
JobName: MatouVerify
FileSet: Verify Set
Level: Initcatalog
Client: MatouVerify
Storage: DLTDrive
OK to run? (yes/mod/no): yes

at which point you respond yes, and the Job will begin.

There after the Job will automatically start according to the schedule you have defined. If you wish to
immediately verify it, you can simply run a Verify Catalog which will be the default. No differences should be
found.

What To Do When Differences Are Found

If you have setup your messages correctly, you should be notified if there are any differences and exactly what
they are. For example, below is the email received after doing an update of OpenSSH:

HeadMan: Start Verify JobId 83 Job=RufusVerify.2002−06−25.21:41:05
HeadMan: Verifying against Init JobId 70 run 2002−06−21 18:58:51
HeadMan: File: /etc/pam.d/sshd
HeadMan: st_ino differ. Cat: 4674b File: 46765
HeadMan: File: /etc/rc.d/init.d/sshd
HeadMan: st_ino differ. Cat: 56230 File: 56231
HeadMan: File: /etc/ssh/ssh_config
HeadMan: st_ino differ. Cat: 81317 File: 8131b
HeadMan: st_size differ. Cat: 1202 File: 1297
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/sshd_config
HeadMan: st_ino differ. Cat: 81398 File: 81325
HeadMan: st_size differ. Cat: 1182 File: 1579
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/ssh_config.rpmnew
HeadMan: st_ino differ. Cat: 812dd File: 812b3
HeadMan: st_size differ. Cat: 1167 File: 1114
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/sshd_config.rpmnew
HeadMan: st_ino differ. Cat: 81397 File: 812dd
HeadMan: st_size differ. Cat: 2528 File: 2407
HeadMan: SHA1 differs.
HeadMan: File: /etc/ssh/moduli

Bacula Storage Management System

What To Do When Differences Are Found 375

HeadMan: st_ino differ. Cat: 812b3 File: 812ab
HeadMan: File: /usr/bin/scp
HeadMan: st_ino differ. Cat: 5e07e File: 5e343
HeadMan: st_size differ. Cat: 26728 File: 26952
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−keygen
HeadMan: st_ino differ. Cat: 5df1d File: 5e07e
HeadMan: st_size differ. Cat: 80488 File: 84648
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/sftp
HeadMan: st_ino differ. Cat: 5e2e8 File: 5df1d
HeadMan: st_size differ. Cat: 46952 File: 46984
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/slogin
HeadMan: st_ino differ. Cat: 5e359 File: 5e2e8
HeadMan: File: /usr/bin/ssh
HeadMan: st_mode differ. Cat: 89ed File: 81ed
HeadMan: st_ino differ. Cat: 5e35a File: 5e359
HeadMan: st_size differ. Cat: 219932 File: 234440
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−add
HeadMan: st_ino differ. Cat: 5e35b File: 5e35a
HeadMan: st_size differ. Cat: 76328 File: 81448
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−agent
HeadMan: st_ino differ. Cat: 5e35c File: 5e35b
HeadMan: st_size differ. Cat: 43208 File: 47368
HeadMan: SHA1 differs.
HeadMan: File: /usr/bin/ssh−keyscan
HeadMan: st_ino differ. Cat: 5e35d File: 5e96a
HeadMan: st_size differ. Cat: 139272 File: 151560
HeadMan: SHA1 differs.
HeadMan: 25−Jun−2002 21:41
JobId: 83
Job: RufusVerify.2002−06−25.21:41:05
FileSet: Verify Set
Verify Level: Catalog
Client: RufusVerify
Start time: 25−Jun−2002 21:41
End time: 25−Jun−2002 21:41
Files Examined: 4,258
Termination: Verify Differences

At this point, it was obvious that these files were modified during installation of the RPMs. If you want to be
super safe, you should run a Verify Level=Catalog immediately before installing new software to verify that
there are no differences, then run a Verify Level=InitCatalog immediately after the installation.

To keep the above email from being sent every night when the Verify Job runs, we simply re−run the Verify Job
setting the level to InitCatalog (as we did above in the very beginning). This will re−establish the current state of
the system as your new basis for future comparisons. Take care that you don't do an InitCatalog after someone
has placed a Trojan horse on your system!

If you have included in your FileSet a file that is changed by the normal operation of your system, you will get
false matches, and you will need to modify the FileSet to exclude that file (or not to Include it), and then re−run
the InitCatalog.

The FileSet that is show below is what I use on my RedHat 7.3 system. With a bit more thought, you can
probably add quite a number of additional files that should be monitored.

Bacula Storage Management System

What To Do When Differences Are Found 376

A Verify Configuration Example

Schedule {
 Name = "VerifyCycle"
 Run = Level=Catalog sun−sat at 5:05
}

Job {
 Name = "MatouVerify"
 Type = Verify
 Level = Catalog # default level
 Client = MatouVerify
 FileSet = "Verify Set"
 Messages = Standard
 Storage = DLTDrive
 Pool = Default
 Schedule = "VerifyCycle"
}
#
The list of files in this FileSet should be carefully
chosen. This is a good starting point.
#
FileSet {
 Name = "Verify Set"
 Include = verify=pins1 signature=SHA1 {
 /boot
 /bin
 /sbin
 /usr/bin
 /lib
 /root/.ssh
 /home/kern/.ssh
 /var/named
 /etc/sysconfig
 /etc/ssh
 /etc/security
 /etc/exports
 /etc/rc.d/init.d
 /etc/sendmail.cf
 /etc/sysctl.conf
 /etc/services
 /etc/xinetd.d
 /etc/hosts.allow
 /etc/hosts.deny
 /etc/hosts
 /etc/modules.conf
 /etc/named.conf
 /etc/pam.d
 /etc/resolv.conf
 }
 Exclude = { }
}

Client {
 Name = MatouVerify
 Address = lmatou
 Catalog = Bacula
 Password = ""
 File Retention = 80d # 80 days
 Job Retention = 1y # one year

Bacula Storage Management System

A Verify Configuration Example 377

 AutoPrune = yes # Prune expired Jobs/Files
}

Catalog {
 Name = Bacula
 dbname = verify; user = bacula; password = ""
}

Firewall Issues Index RPM Packaging

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Using Bacula to Improve Security Index Restoring Files with a Bootstrap File

Bacula Storage Management System

A Verify Configuration Example 378

http://www.bacula.org/

Bacula
®

 − RPM Packaging FAQ
How do I build Bacula for platform xxx?1.
How do I control which database support gets built?2.
What other defines are used?3.
I'm getting errors about not having permission when I try to build the packages. Do I need to be root?4.
I'm building my own rpms but on all platforms and compiles I get an unresolved dependancy for
something called /usr/afsws/bin/pagsh.

5.

Answers

How do I build Bacula for platform xxx?

The bacula spec file contains defines to build for several platforms: RedHat 7.x (rh7), RedHat 8.0 (rh8),
RedHat 9 (rh9), Fedora Core 1 (fc1), and Whitebox Enterprise Linux 3.0 (wb3). The package build is
controlled by a define set at the beginning of the file. These defines basically just control the dependancy
information that gets coded into the finished rpm package. So while you could technically build a
package without defining a platform, or with an incorrect platform, and have it install and run it would
not contain correct dependancy information for the rpm database.

The platform define may be edited in the spec file directly (by default all defines are set to 0 or "not set").
For example, to build the RedHat 7.x package find the line in the spec file which reads

1.

 %define rh7 0

and edit it to read

 %define rh7 1

Alternately you may pass the define on the command line when calling rpmbuild:

 rpmbuild −ba −−define "build_rh7 1" bacula.spec
 rpmbuild −−rebuild −−define build_rh7 1" bacula−x.x.x−x.src.rpm

How do I control which database support gets built?

By default sqlite support will be compiled statically from the depkgs and the bacula−sqlite package will
be produced. To get the MySQL package and support either set the

2.

 %define mysql 0

to

 %define mysql 1

in the spec file directly or pass it to rpmbuild on the command line:

Bacula® − RPM Packaging FAQ 379

 rpmbuild −ba −−define "build_rh7 1" −−define "build_mysql 1" bacula.spec

What other defines are used?

Two other building defines of note are the depkgs_version and tomsrtbt identifiers. These two defines are
set with each release and must match the version of those sources that are being used to build the
packages. You would not ordinarily need to edit these.

3.

I'm getting errors about not having permission when I try to build the packages. Do I need to be
root?

No, you do not need to be root and, in fact, it is better practice to build rpm packages as a non−root user.
Bacula packages are designed to be built by a regular user but you must make a few changes on your
system to do this. If you are building on your own system then the simplest method is to add write
permissions for all to the build directory (/usr/src/redhat/). To accomplish this execute the following
command as root:

4.

 chmod −R 777 /usr/src/redhat

If you are working on a shared system where you can not use the method above then you need to recreate
the /usr/src/redhat directory tree with all of it's subdirectories inside your home directory. Then create a
file named .rpmmacros in your home directory (or edit the file if it already exists) and add the
following line:

 %_topdir /home/myuser/redhat

I'm building my own rpms but on all platforms and compiles I get an unresolved dependancy for
something called /usr/afsws/bin/pagsh.

This is a shell from the OpenAFS (Andrew File System). If you are seeing this then you chose to include
the docs/examples directory in your package. One of the example scripts in this directory is a pagsh
script. Rpmbuild, when scanning for dependancies, looks at the shebang line of all packaged scripts in
addition to checking shared libraries. To avoid this do not package the examples directory.

5.

Using Bacula to Improve Security Index Restoring Files with a Bootstrap File

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Using Bacula to Improve Your System Security Index Installing and Configuring MySQL

Bacula Storage Management System

Bacula® − RPM Packaging FAQ 380

http://www.bacula.org/

The Bootstrap File
The information in this chapter is provided so that you may either create your own bootstrap files, or so that you
can edit a bootstrap file produced by Bacula. However, normally the bootstrap file will be automatically created
for you during the restore command in the Console program, or by using a Write Bootstrap record in your
Backup Jobs, and thus you will never need to know the details of this file.

The bootstrap file contains ASCII information that permits precise specification of what files should be restored.
It is a relatively compact form of specifying the information, is human readable, and can be edited with any text
editor.

File Format

The general format of a bootstrap file is:

<keyword>= <value>

Where each keyword and the value specify which files to restore. More precisely the keyword and their values
serve to limit which files will be restored and thus act as a filter. The absence of a keyword means that all records
will be accepted.

Blank lines and lines beginning with a pound sign (#) in the bootstrap file are ignored.

There are keywords which permit filtering by Volume, Client, Job, FileIndex, Session Id, Session Time, ...

The more keywords that are specified, the more selective the specification of which files to restore will be. In
fact, each keyword is ANDed with other keywords that may be present.

For example,

Volume = Test−001
VolSessionId = 1
VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those files on Volume Test−001 AND
having VolumeSessionId equal to one AND having VolumeSession time equal to 108927638.

The full set of permitted keywords presented in the order in which they are matched against the Volume records
are:

Volume
The value field specifies what Volume the following commands apply to. Each Volume specification
becomes the current Volume, to which all the following commands apply until a new current Volume (if
any) is specified. If the Volume name contains spaces, it should be enclosed in quotes.

Count
The value is the total number of files that will be restored for this Volume. This allows the Storage
daemon to know when to stop reading the Volume.

VolFile
The value is a file number, a list of file numbers, or a range of file numbers numbers to match on the
current Volume. The file number represents the physical file on the Volume where the data is stored. For

The Bootstrap File 381

a tape volume, this record is used to position to the correct starting file, and once the tape is past the last
specified file, reading will stop.

VolBlock
The value is a block number, a list of block numbers, or a range of block numbers numbers to match on
the current Volume. The block number represents the physical block on the Volume where the data is
stored. This record is currently not used.

VolSessionTime
The value specifies a Volume Session Time to be matched from the current volume.

VolSessionId
The value specifies a VolSessionId, a list of volume session ids, or a range of volume session ids to be
matched from the current Volume. Each VolSessionId and VolSessionTime pair corresponds to a unique
Job that is backed up on the Volume.

JobId
The value specifies a JobId, list of JobIds, or range of JobIds to be selected from the current Volume.
Note, the JobId may not be unique if you have multiple Directors, or if you have reinitialized your
database. The JobId filter works only if you do not run multiple simultaneous jobs.

Job
The value specifies a Job name or list of Job names to be matched on the current Volume. The Job
corresponds to a unique VolSessionId and VolSessionTime pair. However, the Job is perhaps a bit more
readable by humans. Standard regular expressions (wildcards) may be used to match Job names. The Job
filter works only if you do not run multiple simultaneous jobs.

Client
The value specifies a Client name or list of Clients to will be matched on the current Volume. Standard
regular expressions (wildcards) may be used to match Client names. The Client filter works only if you
do not run multiple simultaneous jobs.

FileIndex
The value specifies a FileIndex, list of FileIndexes, or range of FileIndexes to be selected from the
current Volume. Each file (data) stored on a Volume within a Session has a unique FileIndex. For each
Session, the first file written is assigned FileIndex equal to one and incremented for each file backed up.
This for a given Volume, the triple VolSessionId, VolSessionTime, and FileIndex uniquely identifies a
file stored on the Volume. Multiple copies of the same file may be stored on the same Volume, but for
each file, the triple VolSessionId, VolSessionTime, and FileIndex will be unique. This triple is stored in
the Catalog database for each file.

Slot
The value specifies the autochanger slot. There may be only a single Slot specification for each Volume.

Stream
The value specifies a Stream, a list of Streams, or a range of Streams to be selected from the current
Volume. Unless you really know what you are doing (the internals of Bacula, you should avoid this
specification.

*JobType
Not yet implemented.

*JobLevel
Not yet implemented.

The Volume record is a bit special in that it must be the first record. The other keyword records may appear in
any order and any number following a Volume record.

Multiple Volume records may be specified in the same bootstrap file, but each one starts a new set of filter
criteria for the Volume.

Bacula Storage Management System

The Bootstrap File 382

In processing the bootstrap file within the current Volume, each filter specified by a keyword is ANDed with the
next. Thus,

Volume = Test−01
Client = "My machine"
FileIndex = 1

will match records on Volume Test−01 AND Client records for My machine AND FileIndex equal to one.

Multiple occurrences of the same record are ORed together. Thus,

Volume = Test−01
Client = "My machine"
Client = "Backup machine"
FileIndex = 1

will match records on Volume Test−01 AND (Client records for My machine OR Backup machine) AND
FileIndex equal to one.

For integer values, you may supply a range or a list, and for all other values except Volumes, you may specify a
list. A list is equivalent to multiple records of the same keyword. For example,

Volume = Test−01
Client = "My machine", "Backup machine"
FileIndex = 1−20, 35

will match records on Volume Test−01 AND (Client records for My machine OR Backup machine) AND
(FileIndex 1 OR 2 OR 3 ... OR 20 OR 35).

As previously mentioned above, there may be multiple Volume records in the same bootstrap file. Each new
Volume definition begins a new set of filter conditions that apply to that Volume and will be ORed with any
other Volume definitions.

As an example, suppose we query for the current set of tapes to restore all files on Client Rufus using the query
command in the console program:

Using default Catalog name=MySQL DB=bacula
*query
Available queries:
 1: List Job totals:
 2: List where a file is saved:
 3: List where the most recent copies of a file are saved:
 4: List total files/bytes by Job:
 5: List total files/bytes by Volume:
 6: List last 10 Full Backups for a Client:
 7: List Volumes used by selected JobId:
 8: List Volumes to Restore All Files:
Choose a query (1−8): 8

Enter Client Name: Rufus
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
154	2002−05−30 12:08	test−02	0	1	1022753312
202	2002−06−15 10:16	test−02	0	2	1024128917
203	2002−06−15 11:12	test−02	3	1	1024132350

Bacula Storage Management System

The Bootstrap File 383

| 204 | 2002−06−18 08:11 | test−02 | 4 | 1 | 1024380678 |
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

The output shows us that there are four Jobs that must be restored. The first one is a Full backup, and the
following three are all Incremental backups.

The following bootstrap file will restore those files:

Volume=test−02
VolSessionId=1
VolSessionTime=1022753312
Volume=test−02
VolSessionId=2
VolSessionTime=1024128917
Volume=test−02
VolSessionId=1
VolSessionTime=1024132350
Volume=test−02
VolSessionId=1
VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes. The output from query might look
like:

+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+
242	2002−06−25 16:50	File0003	0	1	1025016612
242	2002−06−25 16:50	File0004	0	1	1025016612
243	2002−06−25 16:52	File0005	0	2	1025016612
246	2002−06−25 19:19	File0006	0	2	1025025494
+−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+

and the following bootstrap file would restore those files:

Volume=File0003
VolSessionId=1
VolSessionTime=1025016612
Volume=File0004
VolSessionId=1
VolSessionTime=1025016612
Volume=File0005
VolSessionId=2
VolSessionTime=1025016612
Volume=File0006
VolSessionId=2
VolSessionTime=1025025494

Automatic Generation of Bootstrap Files

One thing that is probably worth knowing: the bootstrap files that are generated automatically at the end of the
job are not as optimized as those generated by the restore command. This is because the ones created at the end
of the file, contain all files written to the Volume for that job. As a consequence, all the files saved to an
Incremental or Differential job will be restored first by the Full save, then by any Incremental or Differential
saves.

Bacula Storage Management System

Automatic Generation of Bootstrap Files 384

When the bootstrap file is generated for the restore command, only one copy (the most recent) of each file is
restored.

So if you have spare cycles on your machine, you could optimize the bootstrap files by doing the following:

 ./console
 restore client=xxx select all
 no
 quit

 Backup bootstrap file.

The above will not work if you have multiple FileSets because that will be an extra prompt. However, the restore
client=xxx select all builds the in−memory tree, selecting everything and creates the bootstrap file.

The no answers the Do you want to run this (yes/mod/no) question.

A Final Example

If you want to extract or copy a single Job, you can do it by selecting by JobId (code not tested) or better yet, if
you know the VolSessionTime and the VolSessionId (printed on Job report and in Catalog), specifying this is by
far the best. Using the VolSessionTime and VolSessionId is the way Bacula does restores. A bsr file might look
like the following:

Volume="Vol001"
VolSessionId=10
VolSessionTime=1080847820

If you know how many files are backed up (on the job report), you can enormously speed up the selection by
adding (let's assume there are 157 files):

FileIndex=1−157
Count=157

Finally, if you know the File number where the Job starts, you can also cause bcopy to forward space to the right
file without reading every record:

VolFile=20

There is nothing magic or complicated about a BSR file. Parsing it and properly applying it within Bacula *is*
magic, but you don't need to worry about that.

If you want to see a *real* bsr file, simply fire up the restore command in the console program, select
something, then answer no when it prompts to run the job. Then look at the file restore.bsr in your working
directory.

Using Bacula to Improve Your System Security Index Installing and Configuring MySQL

Bacula Storage Management System

A Final Example 385

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

The Bootstrap File Format Index Installing and Configuring PostgreSQL

Bacula Storage Management System

A Final Example 386

http://www.bacula.org/

Installing and Configuring MySQL

Installing and Configuring MySQL −− Phase I

If you use the ./configure −−with−mysql=mysql−directory statement for configuring Bacula, you will need
MySQL version 3.23.33 or later installed in the mysql−directory (we are currently using 3.23.56). If MySQL is
installed in the standard system location, you need only enter −−with−mysql since the configure program will
search all the standard locations. If you install MySQL in your home directory or some other non−standard
directory, you will need to provide the full path to it.

Installing and Configuring MySQL is not difficult but can be confusing the first time. As a consequence, below,
we list the steps that we used to install it on our machines. Please note that our configuration leaves MySQL
without any user passwords. This may be an undesirable situation if you have other users on your system.

Please note that as of Bacula version 1.31, the thread safe version of the MySQL client library is used, and hence
you must add the −−enable−thread−safe−client option to the ./configure as shown below:

Download MySQL source code from www.mysql.com/downloads1.

Detar it with something like:2.

tar xvfz mysql−filename

Note, the above command requires GNU tar. If you do not have GNU tar, a command such as:

zcat mysql−filename | tar xvf −

will probably accomplish the same thing.

cd mysql−source−directory3.

where you replace mysql−source−directory with the directory name where you put the MySQL source
code.

./configure −−enable−thread−safe−client −−prefix=mysql−directory4.

where you replace mysql−directory with the directory name where you want to install mysql. Normally
for system wide use this is /usr/local/mysql. In my case, I use ~kern/mysql.

make5.

This takes a bit of time.

make install6.

This will put all the necessary binaries, libraries and support files into the mysql−directory that you
specified above.

./scripts/mysql_install_db7.

Installing and Configuring MySQL 387

http://www.mysql.com/downloads

This will create the necessary MySQL databases for controlling user access. Note, this script can also be
found in the bin directory in the installation directory

The MySQL client library mysqlclient requires the gzip compression library libz.a or libz.so. If you are using
rpm packages, these libraries are in the libz−devel package. On Debian systems, you will need to load the
zlib1g−dev package. If you are not using rpms or debs, you will need to find the appropriate package for your
system.

At this point, you should return to completing the installation of Bacula. Later after Bacula is installed, come
back to this chapter to complete the installation. Please note, the installation files used in the second phase of the
MySQL installation are created during the Bacula Installation.

Installing and Configuring MySQL −− Phase II

At this point, you should have built and installed MySQL, or already have a running MySQL, and you should
have configured, built and installed Bacula. If not, please complete these items before proceeding.

Please note that the ./configure used to build Bacula will need to include −−with−mysql=mysql−directory,
where mysql−directory is the directory name that you specified on the ./configure command for configuring
MySQL. This is needed so that Bacula can find the necessary include headers and library files for interfacing to
MySQL.

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main installation
directory. These files will be of the form *_bacula_* (e.g. create_bacula_database). These files are also available
in the <bacula−src>/src/cats directory after running ./configure. If you inspect create_bacula_database, you will
see that it calls create_mysql_database. The *_bacula_* files are provided for convenience. It doesn't matter what
database you have chosen; create_bacula_database will always create your database.

Now you will create the Bacula MySQL database and the tables that Bacula uses.

Start mysql. You might want to use the startmysql script provided in the Bacula release.1.
cd <install−directory>2.

This directory contains the Bacula catalog interface routines.

./grant_mysql_privileges3.

This script creates unrestricted access rights for kern, kelvin, and bacula. You may want to modify it to
suit your situation. Please note that none of these userids including root are password protected.

./create_mysql_database4.

This script creates the MySQL bacula database. The databases you create as well as the access databases
will be located in <install−dir>/var/ in a subdirectory with the name of the database, where <install−dir>
is the directory name that you specified on the −−prefix option. This can be important to know if you
want to make a special backup of the Bacula database or to check its size.

./make_mysql_tables5.

This script creates the MySQL tables used by Bacula.

Bacula Storage Management System

Installing and Configuring MySQL −− Phase II 388

Each of the three scripts (grant_mysql_privileges, create_mysql_database and make_mysql_tables) allows the
addition of a command line argument. This can be useful for specifying the user and or password. For example,
you might need to add −u root to the command line to have sufficient privilege to create the Bacula tables.

To take a closer look at the access privileges that you have setup with the above, you can do:

mysql−directory/bin/mysql −u root mysql

select * from user;

Re−initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re−initialize the catalog database
and throw away all the test Jobs that you ran. To do so, you can do the following:

 cd <install−directory>
 ./drop_mysql_tables
 ./make_mysql_tables

Please note that all information in the database will be lost and you will be starting from scratch. If you have
written on any Volumes, you must write and end of file mark on the volume so that Bacula can reuse it. Do so
with:

 (stop Bacula or unmount the drive)
 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

Linking Bacula with MySQL

After configuring Bacula with

./configure −−enable−thread−safe−client −−prefix=<mysql−directory>

where <mysql−directory> is in my case /home/kern/mysql, you may have to configure the loader so that it can
find the MySQL shared libraries. If you have previously followed this procedure and later add the
−−enable−thread−safe−client options, you will need to rerun the ldconfig program shown below. If you put
MySQL in a standard place such as /usr/lib or /usr/local/lib this will not be necessary, but in my case it is. The
description that follows is Linux specific. For other operating systems, please consult your manuals on how to do
the same thing:

First edit: /etc/ld.so.conf and add a new line to the end of the file with the name of the mysql−directory. In my
case, it is:

/home/kern/mysql/lib/mysql

then rebuild the loader's cache with:

/sbin/ldconfig

Bacula Storage Management System

Re−initializing the Catalog Database 389

If you upgrade to a new version of MySQL, the shared library names will probably changes, and you must
re−run the /sbin/ldconfig command so that the runtime loader can find them.

Alternatively, your system my have a loader environment variable that can be set. For example, on a Solaris
system where I do not have root permission, I use:

LD_LIBRARY_PATH=/home/kern/mysql/lib/mysql

Finally, if you have encryption enabled in MySQL, you may need to explicitly edit the Makefile in several of the
directories to add −lssl −lcrypto to the link.

The Bootstrap File Format Index Installing and Configuring PostgreSQL

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Installing and Configuring MySQL Index Installing and Configuring SQLite

Bacula Storage Management System

Re−initializing the Catalog Database 390

http://www.bacula.org/

Installing and Configuring PostgreSQL

Installing and Configuring PostgreSQL −− Phase I

If you use the ./configure −−with−postgresql=PostgreSQL−Directory statement for configuring Bacula, you
will need PostgreSQL version 7.3 or later installed. NOTE! PostgreSQL versions earlier than 7.3 do not work
with Bacula. If PostgreSQL is installed in the standard system location, you need only enter −−with−postgresql
since the configure program will search all the standard locations. If you install PostgreSQL in your home
directory or some other non−standard directory, you will need to provide the full path with the
−−with−postgresql option.

Installing and configuring PostgreSQL is not difficult but can be confusing the first time. If you prefer, you may
want to use a package provided by your chosen operating system. Binary packages are available on most
PostgreSQL mirrors.

If you prefer to install from source, we recommend following the instructions found in the PostgreSQL
documentation.

If you are using FreeBSD, this FreeBSD Diary article will be useful. Even if you are not using FreeBSD, the
article will contain useful configuration and setup information.

After installing PostgreSQL, you should return to completing the installation of Bacula. Later, after Bacula is
installed, come back to this chapter to complete the installation. Please note, the installation files used in the
second phase of the PostgreSQL installation are created during the Bacula Installation.

Installing and Configuring PostgreSQL −− Phase II

At this point, you should have built and installed PostgreSQL, or already have a running PostgreSQL, and you
should have configured, built and installed Bacula. If not, please complete these items before proceeding.

Please note that the ./configure used to build Bacula will need to include
−−with−postgresql=PostgreSQL−directory, where PostgreSQL−directory is the directory name that you
specified on the ./configure command for configuring PostgreSQL (if you didn't specify a directory or
PostgreSQL is installed in a default location, you do not need to specify the directory). This is needed so that
Bacula can find the necessary include headers and library files for interfacing to PostgreSQL.

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main installation
directory. These files will be of the form *_bacula_* (e.g. create_bacula_database). These files are also available
in the <bacula−src>/src/cats directory after running ./configure. If you inspect create_bacula_database, you will
see that it calls create_postgresql_database. The *_bacula_* files are provided for convenience. It doesn't matter
what database you have chosen; create_bacula_database will always create your database.

Now you will create the Bacula PostgreSQL database and the tables that Bacula uses. These instructions assume
that you already have PostgreSQL running. You will need to perform these steps as a user that is able to create
new databases. This can be the PostgreSQL user (on most systems, this is the pgsql user).

cd <install−directory>1.

This directory contains the Bacula catalog interface routines.

Installing and Configuring PostgreSQL 391

http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.freebsddiary.org/postgresql.php

./create_bacula_database2.

This script creates the PostgreSQL bacula database.

./make_bacula_tables3.

This script creates the PostgreSQL tables used by Bacula.
./grant_bacula_privileges4.

This script creates the database user bacula with restricted access rights. You may want to modify it to
suit your situation. Please note that this database is not password protected.

Each of the three scripts (create_bacula_database, make_bacula_tables, and grant_bacula_privileges) allows the
addition of a command line argument. This can be useful for specifying the user name. For example, you might
need to add −h hostname to the command line to specify a remote database server.

To take a closer look at the access privileges that you have setup with the above, you can do:

PostgreSQL−directory/bin/psql −−command \\dp bacula

Re−initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re−initialize the catalog database
and throw away all the test Jobs that you ran. To do so, you can do the following:

 cd <install−directory>
 ./drop_bacula_tables
 ./make_bacula_tables
 ./grant_bacula_privileges

Please note that all information in the database will be lost and you will be starting from scratch. If you have
written on any Volumes, you must write and end of file mark on the volume so that Bacula can reuse it. Do so
with:

 (stop Bacula or unmount the drive)
 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

Converting from MySQL to PostgreSQL

The conversion procedure presented here was worked out by Norm Dressler <ndressler at dinmar dot com>

This process was tested using the following software versions:

Linux Mandrake 10/Kernel 2.4.22−10 SMP•
Mysql Ver 12.21 Distrib 4.0.15, for mandrake−linux−gnu (i586)•
PostgreSQL 7.3.4•
Bacula 1.34.5•

Bacula Storage Management System

Re−initializing the Catalog Database 392

WARNING: Always as a precaution, take a complete backup of your databases before proceeding with this
process!

Shutdown bacula (cd /etc/bacula;./bacula stop)1.
Run the following command to dump your Mysql database:2.

 mysqldump −f −t −n >bacula−backup.dmp

Make a backup of your /etc/bacula directory (but leave the original in place).3.
Go to your Bacula source directory and rebuild it to include PostgreSQL support rather then Mysql
support. Check the config.log file for your original configure command and replace enable−mysql with
enable−postgresql.

4.

Recompile Bacula with a make and if everything compiles completely, perform a make install.5.
Shutdown Mysql.6.
Start PostgreSQL on your system.7.
Create a bacula user in Postgres with createuser command. Depending on your Postgres install, you may
have to SU to the user who has privileges to create a user.

8.

Verify your pg_hba.conf file contains sufficient permissions to allow bacula to access the server. Mine
has the following since it's on a secure network:

9.

local all all trust

host all all 127.0.0.1 255.255.255.255 trust

NOTE: you should restart your postgres server if you
 made changes

Change into the /etc/bacula directory and prepare the database and tables with the following commands:10.

./create_postgresql_database

./make_postgresql_tables

./grant_postgresql_privileges

Verify you have access to the database:11.

psql −Ubacula bacula

You should not get any errors.

Load your database from the Mysql database dump with:12.

psql −Ubacula bacula

Reseqence your tables with the following commands:13.

Bacula Storage Management System

Re−initializing the Catalog Database 393

psql −Ubacula bacula

SELECT SETVAL('basefiles_baseid_seq', (SELECT
MAX(baseid) FROM basefiles));

SELECT SETVAL('client_clientid_seq', (SELECT
MAX(clientid) FROM client));

SELECT SETVAL('file_fileid_seq', (SELECT MAX(fileid)
FROM file));

SELECT SETVAL('filename_filenameid_seq', (SELECT
MAX(filenameid) FROM filename));

SELECT SETVAL('fileset_filesetid_seq', (SELECT
MAX(filesetid) FROM fileset));

SELECT SETVAL('job_jobid_seq', (SELECT MAX(jobid) FROM job));

SELECT SETVAL('jobmedia_jobmediaid_seq', (SELECT
MAX(jobmediaid) FROM jobmedia));

SELECT SETVAL('media_mediaid_seq', (SELECT MAX(mediaid) FROM media));

SELECT SETVAL('path_pathid_seq', (SELECT MAX(pathid) FROM path));

SELECT SETVAL('pool_poolid_seq', (SELECT MAX(poolid) FROM pool));

At this point, start up Bacula, verify your volume library and perform a test backup to make sure
everything is working properly.

14.

Credits

Many thanks to Dan Languille for writing the PostgreSQL driver. This will surely become the most
popular database that Bacula supports.

Installing and Configuring MySQL Index Installing and Configuring SQLite

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Installing and Configuring PostgreSQL Index Internal Bacula Database

Bacula Storage Management System

Credits 394

http://www.bacula.org/

Installing and Configuring SQLite

Installing and Configuring SQLite −− Phase I

If you use the ./configure −−with−sqlite statement for configuring Bacula, you will need SQLite version 2.2.3
or later installed. Our standard location (for the moment) for SQLite is in the dependency package
depkgs/sqlite−2.2.3. Please note that the version will be updated as new versions are available and tested.

Installing and Configuring is quite easy.

Download the Bacula dependency packages1.
Detar it with something like:2.

tar xvfz depkgs.tar.gz

Note, the above command requires GNU tar. If you do not have GNU tar, a command such as:

zcat depkgs.tar.gz | tar xvf −

will probably accomplish the same thing.

cd depkgs3.

make sqlite4.

At this point, you should return to completing the installation of Bacula.

Please note that the ./configure used to build Bacula will need to include −−with−sqlite.

Installing and Configuring SQLite −− Phase II

This phase is done after you have run the ./configure command to configure Bacula.

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main installation
directory. These files will be of the form *_bacula_* (e.g. create_bacula_database). These files are also available
in the <bacula−src>/src/cats directory after running ./configure. If you inspect create_bacula_database, you will
see that it calls create_sqlite_database. The *_bacula_* files are provided for convenience. It doesn't matter what
database you have chosen; create_bacula_database will always create your database.

At this point, you can create the SQLite database and tables:

cd <install−directory>1.

This directory contains the Bacula catalog interface routines.

./make_sqlite_tables2.

This script creates the SQLite database as well as the tables used by Bacula. This script will be automatically
setup by the ./configure program to create a database named bacula.db in Bacula's working directory.

Installing and Configuring SQLite 395

Linking Bacula with SQLite

If you have followed the above steps, this will all happen automatically and the SQLite libraries will be linked
into Bacula.

Testing SQLite

As of this date (20 March 2002), we have much less "production" experience using SQLite than using MySQL.
That said, we should note that SQLite has performed flawlessly for us in all our testing.

Re−initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re−initialize the catalog database
and throw away all the test Jobs that you ran. To do so, you can do the following:

 cd <install−directory>
 ./drop_sqlite_tables
 ./make_sqlite_tables

Please note that all information in the database will be lost and you will be starting from scratch. If you have
written on any Volumes, you must write and end of file mark on the volume so that Bacula can reuse it. Do so
with:

 (stop Bacula or unmount the drive)
 mt −f /dev/nst0 rewind
 mt −f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

Installing and Configuring PostgreSQL Index Internal Bacula Database

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Installing and Configuring SQLite Index Bacula Licenses

Bacula Storage Management System

Linking Bacula with SQLite 396

http://www.bacula.org/

The Bacula internal database is no longer supported,
please do not use it.

Internal Bacula Database

Previously it was intended to be used primarily by Bacula developers for testing; although SQLite is also a good
choice for this. We do not recommend its use in general.

This database is simplistic in that it consists entirely of Bacula's internal structures appended sequentially to a
file. Consequently, it is in most cases inappropriate for sites with many clients or systems with large numbers of
files, or long−term production environments.

Below, you will find a table comparing the features available with SQLite and MySQL and with the internal
Bacula database. At the current time, you cannot dynamically switch from one to the other, but must rebuild the
Bacula source code. If you wish to experiment with both, it is possible to build both versions of Bacula and
install them into separate directories.

Feature SQLite or MySQL Bacula

Job Record Yes Yes

Media Record Yes Yes

FileName Record Yes No

File Record Yes No

FileSet Record Yes Yes

Pool Record Yes Yes

Client Record Yes Yes

JobMedia Record Yes Yes

List Job Records Yes Yes

List Media Records Yes Yes

List Pool Records Yes Yes

List JobMedia Records Yes Yes

Delete Pool Record Yes Yes

Delete Media Record Yes Yes

Update Pool Record Yes Yes

The Bacula internal database is no longer supported, please do not use it. 397

Implement Verify Yes No

MD5 Signatures Yes No

In addition, since there is no SQL available, the Console commands: sqlquery, query, retention, and any other
command that directly uses SQL are not available with the Internal database.

Installing and Configuring SQLite Index Bacula Licenses

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Internal Bacula Database Index GPL

Bacula Storage Management System

The Bacula internal database is no longer supported, please do not use it. 398

http://www.bacula.org/

Bacula Copyright, Trademark, and Licenses
There are a number of different licenses that are used in Bacula.

GPL

The vast bulk of the code is released under a modified version of the GNU General Public License version 2. The
modifications (actually additions) are described in the source file LICENSE, and their purpose is not to alter the
essential qualities of the GPL but to permit more freedom in linking certain third party software supposedly
non−GPL compatable, provide termination for Patent (and IP) actions, clarify contributors IP and Copyright
claims and non−infringment intentions. The details and governing text are in the file LICENSE in the main
source directory.

Most of this code is copyrighted: Copyright (C) 2000−2003 Kern Sibbald and John Walker.

Portions may be copyrighted by other people (ATT, the Free Software Foundation, ...).

LGPL

Some of the Bacula library source code is released under the GNU Lesser General Public License. This permits
third parties to use these parts of our code in their proprietary programs to interface to Bacula.

Public Domain

Some of the Bacula code has been released to the public domain. E.g. md5.c, SQLite.

Trademark

Bacula®is a registered trademark of Kern Sibbald and John Walker.

We have trademarked the Bacula name to ensure that any variant of Bacula will be exactly compatible with the
program that we have released. The use of the name Bacula is restricted to software systems that agree exactly
with the program presented here.

Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Bacula Copyright, Trademark, and Licenses 399

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Internal Bacula Database Index GPL

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Bacula Licenses Index LGPL

Bacula Storage Management System

Bacula Copyright, Trademark, and Licenses 400

http://www.bacula.org/

GNU General Public License

What to do if you see a possible GPL violation•
Translations of the GPL•

Table of Contents

GNU GENERAL PUBLIC LICENSE
Preamble♦
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION♦
How to Apply These Terms to Your New Programs♦

•

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place − Suite 330, Boston, MA 02111−1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software−−to make
sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish), that you receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

GNU General Public License 401

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translations

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at
all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any
such program or work, and a "work based on the Program" means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 402

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

•

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

•

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not required to print an
announcement.)

•

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine−readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

•

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine−readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

•

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

•

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 403

the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty−free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 404

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and "any later version", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a
pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

Bacula Storage Management System

END OF TERMS AND CONDITIONS 405

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111−1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and `show
c'; they could even be mouse−clicks or menu items−−whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111, USA

Updated: 3 Jan 2000 rms

Bacula Storage Management System

END OF TERMS AND CONDITIONS 406

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Bacula Licenses Index LGPL

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

GPL Index FAQ

Bacula Storage Management System

END OF TERMS AND CONDITIONS 407

http://www.bacula.org/

GNU Lesser General Public License
 [English | Japanese]

Why you shouldn't use the Lesser GPL for your next library•
What to do if you see a possible LGPL violation•
Translations of the LGPL•
The GNU Lesser General Public License as a text file•
The GNU Lesser General Public License as a Texinfo file•

This GNU Lesser General Public License counts as the successor of the GNU Library General Public License.
For an explanation of why this change was necessary, read the Why you shouldn't use the Lesser GPL for your
next library article.

Table of Contents

GNU LESSER GENERAL PUBLIC LICENSE
Preamble♦
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION♦
How to Apply These Terms to Your New Libraries♦

•

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public Licenses are intended to guarantee your freedom to share and change free software−−to
make sure the software is free for all its users.

GNU Lesser General Public License 408

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.ja.html
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translationsLGPL
http://www.gnu.org/copyleft/lesser.txt
http://www.gnu.org/copyleft/lesser.texi
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

This license, the Lesser General Public License, applies to some specially designated software
packages−−typically libraries−−of the Free Software Foundation and other authors who decide to use it. You can
use it too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish); that you receive source code or can get it if you want it; that you can change the software and use
pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you
to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the
rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other
code with the library, you must provide complete object files to the recipients, so that they can relink them with
the library after making changes to the library and recompiling it. And you must show them these terms so they
know their rights.

We protect your rights with a two−step method: (1) we copyright the library, and (2) we offer you this license,
which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the
original version, so that the original author's reputation will not be affected by problems that might be introduced
by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with
the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This
license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different
from the ordinary General Public License. We use this license for certain libraries in order to permit linking those
libraries into non−free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two
is legally speaking a combined work, a derivative of the original library. The ordinary General Public License
therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than
the ordinary General Public License. It also provides other free software developers Less of an advantage over
competing non−free programs. These disadvantages are the reason we use the ordinary General Public License
for many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain
library, so that it becomes a de−facto standard. To achieve this, non−free programs must be allowed to use the
library. A more frequent case is that a free library does the same job as widely used non−free libraries. In this

Bacula Storage Management System

GNU Lesser General Public License 409

case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non−free programs enables a greater number of people to
use a large body of free software. For example, permission to use the GNU C Library in non−free programs
enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user
of a program that is linked with the Library has the freedom and the wherewithal to run that program using a
modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a "work based on the library" and a "work that uses the library". The former contains code
derived from the library, whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General
Public License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these terms.
A "work based on the Library" means either the Library or any derivative work under copyright law: that is to
say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running a program using the Library is not restricted, and output from such a program is
covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool
for writing it). Whether that is true depends on what the Library does and what the program that uses the Library
does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 410

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) The modified work must itself be a software library.•
b) You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

•

c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of
this License.

•

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is invoked,
then you must make a good faith effort to ensure that, in the event an application does not supply such
function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

•

(For example, a function in a library to compute square roots has a purpose that is entirely well−defined
independent of the application. Therefore, Subsection 2d requires that any application−supplied function
or table used by this function must be optional: if the application does not supply it, the square root
function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Library, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of
the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.)
Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine−readable source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 411

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library
by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is
therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object code
for the work may be a derivative work of the Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold
for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of
whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will
still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the
terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the
Library to produce a work containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and
its use are covered by this License. You must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine−readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine−readable
"work that uses the Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that
the user who changes the contents of definitions files in the Library will not necessarily be able to
recompile the application to use the modified definitions.)

•

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(1) uses at run time a copy of the library already present on the user's computer system, rather than
copying library functions into the executable, and (2) will operate properly with a modified version of the
library, if the user installs one, as long as the modified version is interface−compatible with the version
that the work was made with.

•

c) Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

•

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 412

d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

•

e) Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

•

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a contradiction means you cannot use both them and the Library
together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side−by−side in a single library together
with other library facilities not covered by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

•

b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

•

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these
terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty−free redistribution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Library.

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 413

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which applies to it and "any later version", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER

Bacula Storage Management System

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 414

OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend
making it free software that everyone can redistribute and change. You can do so by permitting redistribution
under these terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

one line to give the library's name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in
the library `Frob' (a library for tweaking knobs) written
by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111, USA

Bacula Storage Management System

END OF TERMS AND CONDITIONS 415

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Updated: 27 Nov 2000 paulv

GPL Index FAQ

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

License Index Thanks

Bacula Storage Management System

END OF TERMS AND CONDITIONS 416

http://www.bacula.org/

Bacula Projects
Please see the projects page on the web site at: www.bacula.org.projects.html, or see the projects file in the main
source directory. For a current list of tasks you can see kernstodo in the main source directory.

License Index Thanks

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Security Issues Index Bugs

Bacula Projects 417

http://www.bacula.org/projects.html
http://www.bacula.org/

Thanks
Thanks to Richard Stallman for starting the Free Software movement and for bringing us gcc and all the other
GNU tools.

Thanks to Linus Torvalds for bring us Linux.

Thanks to all the Free Software programmers. Without being able to peek at your code, and in some cases, take
parts of it, this project would have been much more difficult.

Thanks to John Walker for suggesting this project, giving it a name, contributing software he has written, and for
his programming efforts on Bacula as well as having acted as a constant sounding board and source of ideas.

Thanks to the apcupsd project where I started my Free Software efforts, and from which I was able to borrow
some ideas and code that I had written.

Special thanks to D. Scott Barninger for writing the bacula RPM spec file, building all the RPM files and loading
them onto Source Forge. This has been a tremendous help.

Thanks to Dan Langille for the incredible amount of testing he did on FreeBSD. His perseverance is truly
remarkable. Thanks also for the many contributions he has made to improve Bacula (pthreads patch for FreeBSD,
improved start/stop script and addition of Bacula userid and group, stunnel, ...), his continuing support of Bacula
users. He also wrote the PostgreSQL driver for Bacula and has been a big help in correcting the SQL.

Thanks to Phil Stracchino for writing the gnome−console ConsoleFont configuration command, all the
suggestions he has made, and his continuing suppport of Bacula users.

Thanks to multiple other Bacula Packagers who make and release packages for different platforms for Bacula.

Thanks to Christopher Hull for developing the native Win32 Bacula emulation code and for contributing it to the
Bacula project.

Thanks to Nicolas Boichat for writing wx−console and the bacula−tray−monitor. These are very nice GUI
additions to Bacula.

Thanks to Nic Bellamy for providing the bacula−dir.conf file that he uses to implement daily tape rotation using
multiple Pools.

Thanks to Johan Decock for providing numerous corrections to the manual.

Thanks to all the Bacula users, especially those of you who have contributed ideas, bug reports, patches, and new
features.

The original variable expansion code used in the LabelFormat comes from the Open Source Software Project
(www.ossp.org). It has been adapted and extended for use in Bacula.

For all those who I have left out, please send me a reminder, and in any case, thanks for your contribution.

Thanks 418

Copyrights and Trademarks

Certain words and/or products are Copyrighted or Trademarked such as Windows (by Microsoft). Since they are
numerous, and we are not necessarily aware of the details of each, we don't try to list them here. However, we
acknowledge all such Copyrights and Trademarks, and if any copyright or trademark holder wishes a specific
acknowledgment, notify us, and we will be happy to add it where appropriate.

Security Issues Index Bugs

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Thanks Index Bacula Director Services

Bacula Storage Management System

Copyrights and Trademarks 419

http://www.bacula.org/

Bacula Bugs
Well fortunately there are not too many bugs, but thanks to Dan Langille, we have a bugs database where bugs
are reported. Generally, when a bug is fixed, a patch for the currently release version will be attached to the bug
report.

A "raw" list of the current task list and known issues can be found in kernstodo in the main Bacula source
directory.

Thanks Index Bacula Director Services

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula 1.36 User's Guide

Bacula Configuration Index Client/File daemon Configuration

Bacula Bugs 420

http://www.bacula.org/

The Old FileSet Resource
Note, this form of the FileSet resource still works but has been replaced by a new more flexible form in Bacula
version 1.34.3. As a consequence, you are encouraged to convert to the new form as this one is deprecated and
will be removed in a future version.

The FileSet resource defines what files are to be included in a backup job. At least one FileSet resource is
required. It consists of a list of files or directories to be included, a list of files or directories to be excluded and
the various backup options such as compression, encryption, and signatures that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically create a new FileSet (defined by
the name and an MD5 checksum of the Include contents). Each time a new FileSet is created, Bacula will ensure
that the first backup is always a Full save.

FileSet
Start of the FileSet records. At least one FileSet resource must be defined.

Name = <name>
The name of the FileSet resource. This record is required.

Include = <processing−options>
 { <file−list> }

The Include resource specifies the list of files and/or directories to be included in the backup job. There
can be any number of Include file−list specifications within the FileSet, each having its own set of
processing−options. Normally, the file−list consists of one file or directory name per line. Directory
names should be specified without a trailing slash. Wild−card (or glob matching) does not work when
used in an Include list. It does work in an Exclude list though. Just the same, any asterisk (*), question
mark (?), or left−bracket ([) must be preceded by a slash (\\) if you want it to represent the literal
character.

You should always specify a full path for every directory and file that you list in the FileSet. In addition,
on Windows machines, you should always prefix the directory or filename with the drive specification
(e.g. c:/xxx) using Unix directory name separators (forward slash). However, within an Exclude where
for some reason the exclude will not work with a prefixed drive letter. If you want to specify a drive
letter in exclusions on Win32 systems, you can do so by specifying:

 Exclude = { /cygdrive/d/archive/Mulberry }

where in this case, the /cygdrive/d is Cygwin's way of referring to drives on Win32 (thanks to Mathieu
Arnold for this tip).

Bacula's default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bacula will not by default cross file systems (or mount points in Unix parlance). This
means that if you specify the root partition (e.g. /), Bacula will save only the root partition and not any of
the other mounted file systems. Similarly on Windows systems, you must explicitly specify each of the
drives you want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you will most likely
want to enclose each specification within double quotes. The df command on Unix systems will show
you which mount points you must specify to save everything. See below for an example.

Take special care not to include a directory twice or Bacula will backup the same files two times wasting
a lot of space on your archive device. Including a directory twice is very easy to do. For example:

The Old FileSet Resource 421

 Include = { / /usr }

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to be
backed up twice. In this case, on Bacula versions prior to 1.32f−5−09Mar04 due to a bug, you will not be
able to restore hard linked files that were backed up twice.

The <processing−options> is optional. If specified, it is a list of keyword=value options to be applied to
the file−list. Multiple options may be specified by separating them with spaces. These options are used to
modify the default processing behavior of the files included. Since there can be multiple Include sets,
this permits effectively specifying the desired options (compression, encryption, ...) on a file by file basis.
The options may be one of the following:

compression=GZIP
All files saved will be software compressed using the GNU ZIP compression format. The
compression is done on a file by file basis by the File daemon. If there is a problem reading the
tape in a single record of a file, it will at most affect that file and none of the other files on the
tape. Normally this option is not needed if you have a modern tape drive as the drive will do its
own compression. However, compression is very important if you are writing your Volumes to a
file, and it can also be helpful if you have a fast computer but a slow network.
Specifying GZIP uses the default compression level six (i.e. GZIP is identical to GZIP6). If you
want a different compression level (1 through 9), you can specify it by appending the level
number with no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum
compression but the fastest algorithm, and compression=GZIP9 would give the highest level of
compression, but requires more computation. According to the GZIP documentation,
compression levels greater than 6 generally give very little extra compression but are rather CPU
intensive.

signature=MD5
An MD5 signature will be computed for all files saved. Adding this option generates about 5%
extra overhead for each file saved. In addition to the additional CPU time, the MD5 signature
adds 16 more bytes per file to your catalog. We strongly recommend that this option be specified
as a default for all files.

signature=SHA1
An SHA1 signature will be computed for all The SHA1 algorithm is purported to be some what
slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four
more bytes than the MD5 signature. We strongly recommend that either this option or MD5 be
specified as a default for all files. Note, only one of the two options MD5 or SHA1 can be
computed for any file.

*encryption=<algorithm>
All files saved will be encrypted using one of the following algorithms (NOT YET
IMPLEMENTED):
*AES

verify=<options>
The options letters specified are used when running a Verify Level=Catalog job, and may be
any combination of the following:
i

compare the inodes
p

compare the permission bits
n

Bacula Storage Management System

The Old FileSet Resource 422

compare the number of links
u

compare the user id
g

compare the group id
s

compare the size
a

compare the access time
m

compare the modification time (st_mtime)
c

compare the change time (st_ctime)
s

report file size decreases
5

compare the MD5 signature
1

compare the SHA1 signature

A useful set of general options on the Level=Catalog verify is pins5 i.e. compare permission
bits, inodes, number of links, size, and MD5 changes.

onefs=yes/no
If set to yes (the default), Bacula will remain on a single file system. That is it will not backup
file systems that are mounted on a subdirectory. In this case, you must explicitly list each file
system you want saved. If you set this option to no, Bacula will backup all mounted file systems
(i.e. traverse mount points) that are found within the FileSet. Thus if you have NFS or Samba
file systems mounted on a directory included in your FileSet, they will also be backed up.
Normally, it is preferable to set onefs=yes and to explicitly name each file system you want
backed up. See the example below for more details.

portable=yes/no
If set to yes (default is no), the Bacula File daemon will backup Win32 files in a portable format.
By default, this option is set to no, which means that on Win32 systems, the data will be backed
up using Windows API calls and on WinNT/2K/XP, the security and ownership data will be
properly backed up (and restored), but the data format is not portable to other systems −− e.g.
Unix, Win95/98/Me. On Unix systems, this option is ignored, and unless you have a specific
need to have portable backups, we recommend accept the default (no) so that the maximum
information concerning your files is backed up.

recurse=yes/no
If set to yes (the default), Bacula will recurse (or descend) into all subdirectories found unless the
directory is explicitly excluded using an exclude definition. If you set recurse=no, Bacula will
save the subdirectory entries, but not descend into the subdirectories, and thus will not save the
contents of the subdirectories. Normally, you will want the default (yes).

sparse=yes/no
Enable special code that checks for sparse files such as created by ndbm. The default is no, so no
checks are made for sparse files. You may specify sparse=yes even on files that are not sparse
file. No harm will be done, but there will be a small additional overhead to check for buffers of
all zero, and a small additional amount of space on the output archive will be used to save the
seek address of each non−zero record read.
Restrictions: Bacula reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non−zero, the whole

Bacula Storage Management System

The Old FileSet Resource 423

buffer will be written to tape, possibly including some disk sectors (generally 4098 bytes) that
are all zero. As a consequence, Bacula's detection of sparse blocks is in 32K increments rather
than the system block size. If anyone considers this to be a real problem, please send in a request
for change with the reason. The sparse code was first implemented in version 1.27.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at
address zero, then 512 bytes at address 1 million. The operating system will allocate only two
blocks, and the empty space or hole will have nothing allocated. However, when you read the
sparse file and read the addresses where nothing was written, the OS will return all zeros as if the
space were allocated, and if you backup such a file, a lot of space will be used to write zeros to
the volume. Worse yet, when you restore the file, all the previously empty space will now be
allocated using much more disk space. By turning on the sparse option, Bacula will specifically
look for empty space in the file, and any empty space will not be written to the Volume, nor will
it be restored. The price to pay for this is that Bacula must search each block it reads before
writing it. On a slow system, this may be important. If you suspect you have sparse files, you
should benchmark the difference or set sparse for only those files that are really sparse.

readfifo=yes/no
If enabled, tells the Client to read the data on a backup and write the data on a restore to any
FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program
already running that writes into the FIFO for a backup or reads from the FIFO on a restore. This
can be accomplished with the RunBeforeJob record. If this is not the case, Bacula will hang
indefinitely on reading/writing the FIFO. When this is not enabled (default), the Client simply
saves the directory entry for the FIFO.

mtimeonly=yes/no
If enabled, tells the Client that the selection of files during Incremental and Differential backups
should based only on the st_mtime value in the stat() packet. The default is no which means that
the selection of files to be backed up will be based on both the st_mtime and the st_ctime values.
In general, it is not recommended to use this option.

keepatime=yes/no
The default is no. When enabled, Bacula will reset the st_atime (access time) field of files that it
backs up to their value prior to the backup. This option is not generally recommended as there
are very few programs that use st_atime, and the backup overhead is increased because of the
additional system call necessary to reset the times. (I'm not sure this works on Win32).

<file−list> is a space separated list of filenames and/or directory names. To include names containing
spaces, enclose the name between double−quotes. The list may span multiple lines, in fact, normally it is
good practice to specify each filename on a separate line.

There are a number of special cases when specifying files or directories in a file−list. They are:

Any file−list item preceded by an at−sign (@) is assumed to be a filename containing a list of
files, which is read when the configuration file is parsed during Director startup. Note, that the
file is read on the Director's machine and not on the Client.

♦

Any file−list item beginning with a vertical bar (|) is assumed to be a program. This program will
be executed on the Director's machine at the time the Job starts (not when the Director reads the
configuration file), and any output from that program will be assumed to be a list of files or
directories, one per line, to be included. This allows you to have a job that for example includes
all the local partitions even if you change the partitioning by adding a disk. In general, you will
need to prefix your command or commands with a sh −c so that they are invoked by a shell. This
will not be the case if you are invoking a script as in the second example below. Also, you must
take care to escape wild−cards and ensure that any spaces in your command are escaped as well.

♦

Bacula Storage Management System

The Old FileSet Resource 424

If you use a single quotes (') within a double quote ("), Bacula will treat everything between the
single quotes as one field so it will not be necessary to escape the spaces. In general, getting all
the quotes and escapes correct is a real pain as you can see by the next example. As a
consequence, it is often easier to put everything in a file, and simply us the file name within
Bacula. In that case the sh −c will not be necessary providing the first line of the file is #!/bin/sh.

As an example:

Include = signature=SHA1 {
 "|sh −c 'df −l | grep \"^/dev/hd[ab]\" | grep −v \".*/tmp\" \
 | awk \"{print \\$6}\"'"
}

will produce a list of all the local partitions on a RedHat Linux system. Note, the above line was
split, but should normally be written on one line. Quoting is a real problem because you must
quote for Bacula which consists of preceding every \ and every " with a \, and you must also
quote for the shell command. In the end, it is probably easier just to execute a small file with:

Include = signature=MD5 {
 "|my_partitions"
}

where my_partitions has:

#!/bin/sh
df −l | grep "^/dev/hd[ab]" | grep −v ".*/tmp" \
 | awk "{print \$6}"

If the vertical bar (|) is preceded by a backslash as in \|, the program will be executed on the
Client's machine instead of on the Director's machine −− (this is implemented but not tested, and
very likely will not work on Windows).

Any file−list item preceded by a less−than sign (<) will be taken to be a file. This file will be
read on the Director's machine at the time the Job starts, and the data will be assumed to be a list
of directories or files, one per line, to be included. This feature allows you to modify the external
file and change what will be saved without stopping and restarting Bacula as would be necessary
if using the @ modifier noted above.

♦

If you precede the less−than sign (<) with a backslash as in \<, the file−list will be read on the
Client machine instead of on the Director's machine (implemented but not tested).

If you explicitly specify a block device such as /dev/hda1, then Bacula (starting with version
1.28) will assume that this is a raw partition to be backed up. In this case, you are strongly urged
to specify a sparse=yes include option, otherwise, you will save the whole partition rather than
just the actual data that the partition contains. For example:

♦

Include = signature=MD5 sparse=yes {
 /dev/hd6
}

will backup the data in device /dev/hd6.

Bacula Storage Management System

The Old FileSet Resource 425

Ludovic Strappazon has pointed out that this feature can be used to backup a full Microsoft
Windows disk. Simply boot into the system using a Linux Rescue disk, then load a statically
linked Bacula as described in the Disaster Recovery Using Bacula chapter of this manual. Then
simply save the whole disk partition. In the case of a disaster, you can then restore the desired
partition.

If you explicitly specify a FIFO device name (created with mkfifo), and you add the option
readfifo=yes as an option, Bacula will read the FIFO and back its data up to the Volume. For
example:

♦

Include = signature=SHA1 readfifo=yes {
 /home/abc/fifo
}

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it, and store all data thus
obtained on the Volume. Please note, you must have a process on the system that is writing into
the fifo, or Bacula will hang, and after one minute of waiting, it will go on to the next file. The
data read can be anything since Bacula treats it as a stream.

This feature can be an excellent way to do a "hot" backup of a very large database. You can use
the RunBeforeJob to create the fifo and to start a program that dynamically reads your database
and writes it to the fifo. Bacula will then write it to the Volume.

During the restore operation, the inverse is true, after Bacula creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that
there is a reader program or Bacula will block, and after one minute, Bacula will time out the
write to the fifo and move on to the next file.

The Exclude Files specifies the list of files and/or directories to be excluded from the backup job. The
<file−list> is a comma or space separated list of filenames and/or directory names. To exclude names
containing spaces, enclose the name between double−quotes. Most often each filename is on a separate
line.

For exclusions on Windows systems, do not include a leading drive letter such as c:. This does not work.
Any filename preceded by an at−sign (@) is assumed to be a filename on the Director's machine
containing a list of files.

The following is an example of a valid FileSet resource definition:

FileSet {
 Name = "Full Set"
 Include = compression=GZIP signature=SHA1 sparse=yes {
 @/etc/backup.list
 }
 Include = {
 /root/myfile
 /usr/lib/another_file
 }
 Exclude = { *.o }
}

Bacula Storage Management System

The Old FileSet Resource 426

Note, in the above example, all the files contained in /etc/backup.list will be compressed with GZIP compression,
an SHA1 signature will be computed on the file's contents (its data), and sparse file handling will apply.

The two files /root/myfile and /usr/lib/another_file will also be saved but without any options. In addition, all
files with the extension .o will be excluded from the file set (i.e. from the backup).

Suppose you want to save everything except /tmp on your system. Doing a df command, you get the following
output:

[kern@rufus k]$ df
Filesystem 1k−blocks Used Available Use% Mounted on
/dev/hda5 5044156 439232 4348692 10% /
/dev/hda1 62193 4935 54047 9% /boot
/dev/hda9 20161172 5524660 13612372 29% /home
/dev/hda2 62217 6843 52161 12% /rescue
/dev/hda8 5044156 42548 4745376 1% /tmp
/dev/hda6 5044156 2613132 2174792 55% /usr
none 127708 0 127708 0% /dev/shm
//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou
lmatou:/ 1554264 215884 1258056 15% /mnt/matou
lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home
lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr
lpmatou:/ 995116 484112 459596 52% /mnt/pmatou
lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home
lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr
deuter:/ 4806936 97684 4465064 3% /mnt/deuter
deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home
deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

Now, if you specify only / in your Include list, Bacula will only save the Filesystem /dev/hda5. To save all file
systems except /tmp with out including any of the Samba or NFS mounted systems, and explicitly excluding a
/tmp, /proc, .journal, and .autofsck, which you will not want to be saved and restored, you can use the following:

FileSet {
 Name = Everything
 Include = {
 /
 /boot
 /home
 /rescue
 /usr
 }
 Exclude = {
 /proc
 /tmp
 .journal
 .autofsck
 }
}

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed in
the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so that it is no
longer in its own partition.

Please be aware that allowing Bacula to traverse or change file systems can be very dangerous. For example,
with the following:

Bacula Storage Management System

The Old FileSet Resource 427

FileSet {
 Name = "Bad example"
 Include = onefs=no {
 /mnt/matou
 }
}

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bacula will
traverse file systems. However, if /mnt/matou has the current machine's file systems mounted, as is often the
case, you will get yourself into a recursive loop and the backup will never end.

The following FileSet definition will backup a raw partition:

FileSet {
 Name = "RawPartition"
 Include = sparse=yes {
 /dev/hda2
 }
}

Note, in backing up and restoring a raw partition, you should ensure that no other process including the system is
writing to that partition. As a precaution, you are strongly urged to ensure that the raw partition is not mounted or
is mounted read−only. If necessary, this can be done using the RunBeforeJob record.

Additional Considerations for Using Excludes on Windows

For exclude lists to work correctly on Windows, you must observe the following rules:

Filenames are case sensitive, so you must use the correct case.•
To exclude a directory, you must not have a trailing slash on the directory name.•
If you have spaces in your filename, you must enclose the entire name in double−quote characters (").
Trying to use a backslash before the space will not work.

•

You must not precede the excluded file or directory with a drive letter (such as c:) otherwise it will not
work.

•

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes or
excludes to work, you might want to try using the estimate job=xxx listing command documented in the
Console chapter of this manual.

Windows Considerations for FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in c:).
However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish to include
a quote in a file name, precede the quote with a backslash (\\). For example you might use the following for a
Windows machine to backup the "My Documents" directory:

FileSet {
 Name = "Windows Set"
 Include = {
 "c:/My Documents"
 }
 Exclude = { *.obj *.exe }
}

Bacula Storage Management System

Additional Considerations for Using Excludes on Windows 428

When using exclusion on Windows, do not use a drive prefix (i.e. c:) as it will prevent the exclusion from
working. However, if you need to specify a drive letter in exclusions on Win32 systems, you can do so by
specifying:

 Exclude = { /cygdrive/d/archive/Mulberry }

where in this case, the /cygdrive/d is Cygwin's way of referring to drive d: (thanks to Mathieu Arnold for this
tip).

A Windows Example FileSet

The following example was contributed by Phil Stracchino:

This is my Windows 2000 fileset:

FileSet {
 Name = "Windows 2000 Full Set"
 Include = signature=MD5 {
 c:/
 }
Most of these files are excluded not because we don't want
them, but because Win2K won't allow them to be backed up
except via proprietary Win32 API calls.
 Exclude = {
 "/Documents and Settings/*/Application Data/*/Profiles/*/*/
 Cache/*"
 "/Documents and Settings/*/Local Settings/Application Data/
 Microsoft/Windows/[Uu][Ss][Rr][Cc][Ll][Aa][Ss][Ss].*"
 "/Documents and Settings/*/[Nn][Tt][Uu][Ss][Ee][Rr].*"
 "/Documents and Settings/*/Cookies/*"
 "/Documents and Settings/*/Local Settings/History/*"
 "/Documents and Settings/*/Local Settings/
 Temporary Internet Files/*"
 "/Documents and Settings/*/Local Settings/Temp/*"
 "/WINNT/CSC"
 "/WINNT/security/logs/scepol.log"
 "/WINNT/system32/config/*"
 "/WINNT/msdownld.tmp/*"
 "/WINNT/Internet Logs/*"
 "/WINNT/$Nt*Uninstall*"
 "/WINNT/Temp/*"
 "/temp/*"
 "/tmp/*"
 "/pagefile.sys"
 }
}

Note, the three line of the above Exclude were split to fit on the document page, they should be written on a
single line in real use.

Bacula Configuration Index Client/File daemon Configuration

Bacula Storage Management System

A Windows Example FileSet 429

Bacula 1.36 User's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

#include "devel_template.inc" title="Bacula Developer and Design Document" tag=title

Bacula Storage Management System

A Windows Example FileSet 430

http://www.bacula.org/

Bacula Developer's Documents
Developer Notes•
Porting Notes•
Regression Testing•
Bacula GUI Interface•
Intra−daemon Protocols•
Storage Media Format•
Memory Management Design•
Bacula Network Protocol•
Our MD5 Algorithm•
Smart Memory Allocation Routines•
Director Services Design•
Storage Services Design•
File Services Design•
Catalog Services Design•

Bacula® is a registered trademark of Kern Sibbald and John Walker.

Copyright (C) 2000−2004 Kern Sibbald and John Walker.

Bacula source code is released under the GNU General Public License version 2.

The use of the name Bacula is restricted to software systems that agree exactly with the program presented
here.

Bacula Developer's Guide

Internal Component Designs Index Porting Notes

Bacula Developer's Documents 431

Bacula Developer Notes

General

This document is intended mostly for developers and describes the the general framework of
making Bacula source changes.

Contributions

Contributions from other programmers will be broken into two groups. The first are contributions
that are aids and not essential to Bacula. In general, these will be scripts or will go into and
examples or contributions directory.

The second class of contributions are those which will be integrated with Bacula and become an
essential part. Within this class of contributions, there are two hurdles to surmount. One is
getting your patch accepted, and two is dealing with copyright issues. The rest of this document
describes some of the requirements for such code.

Patches

Subject to the copyright hurdle described below, your patches should be sent in diff −u format
relative to the current contents of the Source Forge CVS, which is the easiest for me to
understand. If you plan on doing significant development work over a period of time, after
having your first patch reviewed and approved, you will be eligible for having CVS access so
that you can commit your changes directly to the CVS repository. To do so, you will need a
userid on Source Forge.

Copyrights

To avoid future problems concerning changing licensing or copyrights, all code contributions
more than a hand full of lines must be in the Public Domain or have the copyright assigned to
Kern Sibbald and John Walker as in the current code. This double copyright ownership ensures
that no single person controls the software.

Your name should be clearly indicated as the author of the code, and you must be extremely
careful not to violate any copyrights or use other people's code without acknowledging it. The
purpose of this requirement is to avoid future problems copyright, patent, or intellectual property
problems. To understand on possible source of future problems, please examine the difficulties
Mozilla is (was?) having finding previous contributors at
http://www.mozilla.org/MPL/missing.html. The other important issue is to avoid copyright,
patent, or intellectual property violations as are currently (May 2003) being claimed by SCO
against IBM.

Although the copyright will be held by Kern and John, each developer is expected to indicate
that he wrote and/or modified a particular module (or file) and any other sources.

Although we have absolutely no plans for any commercial venture, it would be a shame to totally
rule it out. Our desire is that if one day something commercial is developed around Bacula (as is
the case with MySQL, RedHat, Ximian, and other organizations), each developer will have an

Bacula Developer Notes 432

http://www.mozilla.org/MPL/missing.html

opportunity to participate, at a minimum, proportional to his prior contributions. Again, we have
no plans for creating any such commercial enterprise.

If you have any doubts about this, please don't hesitate to ask. Our (John and my) track records
with Autodesk are easily available; early programmers/founders/contributors and later employees
had substantial shares of the company, and no one founder had a controlling part of the company.
Even though Microsoft created many millionaires among early employees, the politics of
Autodesk (during our time at the helm) is in stark contrast to Microsoft where the majority of the
company is still tightly held among a few.

Items not needing a copyright assignment are: most small changes, enhancements, or bug fixes of
5−10 lines of code, and documentation.

Copyright Assignment

Since this is not a commercial enterprise, and I prefer to believe in everyone's good faith,
developers can assign the copyright by explicitly acknowledging that they do so in their first
submission.

Developing Bacula

Typically the simplest way to develop Bacula is to open one xterm window pointing to the
source directory you wish to update; a second xterm window at the top source directory level,
and a third xterm window at the bacula directory <top>/src/bacula. After making source changes
in one of the directories, in the top source directory xterm, build the source, and start the
daemons by entering:

make

and

./startit

then in the enter:

./console

or

./gnome−console

to start the Console program. Enter any commands for testing. For example: run kernsverify full.

Note, the instructions here to use ./startit are different from using a production system where the
administrator starts Bacula by entering ./bacula start. This difference allows a development
version of Bacula to be run on a computer at the same time that a production system is running.
The ./startit strip starts Bacula using a different set of configuration files, and thus permits
avoiding conflicts with any production system.

To make additional source changes, exit from the Console program, and in the top source

Bacula Storage Management System

Copyright Assignment 433

directory, stop the daemons by entering:

./stopit

then repeat the process.

Debugging

Probably the first thing to do is to turn on debug output.

A good place to start is with a debug level of 20 as in ./startit −d20. The startit command starts
all the daemons with the same debug level. Alternatively, you can start the appropriate daemon
with the debug level you want. If you really need more info, a debug level of 60 is not bad, and
for just about everything a level of 200.

Using a Debugger

If you have a serious problem such as a segmentation fault, it can usually be found quickly using
a good multiple thread debugger such as gdb. For example, suppose you get a segmentation
violation in bacula−dir. You might use the following to find the problem:

<start the Storage and File daemons>
cd dird
gdb ./bacula−dir
run −f −s −c ./dird.conf
<it dies with a segmentation fault>
where

The −f option is specified on the run command to inhibit dird from going into the background.
You may also want to add the −s option to the run command to disable signals which can
potentially interfere with the debugging.

As an alternative to using the debugger, each Bacula daemon has a built in back trace feature
when a serious error is encountered. It calls the debugger on itself, produces a back trace, and
emails the report to the developer. For more details on this, please see the chapter in this manual
entitled What To Do When Bacula Crashes (Kaboom).

Memory Leaks

Because Bacula runs routinely and unattended on client and server machines, it may run for a
long time. As a consequence, from the very beginning, Bacula uses SmartAlloc to ensure that
there are no memory leaks. To make detection of memory leaks effective, all Bacula code that
dynamically allocates memory MUST have a way to release it. In general when the memory is
no longer needed, it should be immediately released, but in some cases, the memory will be held
during the entire time that Bacula is executing. In that case, there MUST be a routine that can be
called at termination time that releases the memory. In this way, we will be able to detect
memory leaks. Be sure to immediately correct any and all memory leaks that are printed at the
termination of the daemons.

Bacula Storage Management System

Debugging 434

Special Files

Kern uses files named 1, 2, ... 9 with any extension as scratch files. Thus any files with these
names are subject to being rudely deleted at any time.

When Implementing Incomplete Code

Please identify all incomplete code with a comment that contains ***FIXME***, where there
are three asterisks (*) before and after the word FIXME (in capitals) and no intervening spaces.
This is important as it allows new programmers to easily recognize where things are partially
implemented.

Bacula Source File Structure

The distribution generally comes as a tar file of the form bacula.x.y.z.tar.gz where x, y, and z
are the version, release, and update numbers respectively.

Once you detar this file, you will have a directory structure as follows:

|
|− depkgs
 |− mtx (autochanger control program + tape drive info)
 |− sqlite (SQLite database program)
|− depkgs−win32
 |− pthreads (Native win32 pthreads library −− dll)
 |− zlib (Native win32 zlib library)
 |− wx (wxWidgets source code)
|− bacula (main source directory containing configuration
 | and installation files)
 |− autoconf (automatic configuration files, not normally used
 | by users)
 |− doc (documentation directory)
 |− home−page (Bacula's home page source)
 |− html−manual (html document directory)
 |− techlogs (Technical development notes);
 |− intl (programs used to translate)
 |− platforms (OS specific installation files)
 |− redhat (Red Hat installation)
 |− solaris (Sun installation)
 |− freebsd (FreeBSD installation)
 |− irix (Irix installation −− not tested)
 |− unknown (Default if system not identified)
 |− po (translations of source strings)
 |− src (source directory; contains global header files)
 |− cats (SQL catalog database interface directory)
 |− console (bacula user agent directory)
 |− dird (Director daemon)
 |− filed (Unix File daemon)
 |− win32 (Win32 files to make bacula−fd be a service)

 |− findlib (Unix file find library for File daemon)
 |− gnome−console (GNOME version of console program)
 |− lib (General Bacula library)
 |− stored (Storage daemon)
 |− tconsole (Tcl/tk console program −− not yet working)
 |− testprogs (test programs −− normally only in Kern's tree)

Bacula Storage Management System

Special Files 435

 |− tools (Various tool programs)
 |− win32 (Native Win32 File daemon)
 |− baculafd (Visual Studio project file)
 |− compat (compatibility interface library)
 |− filed (links to src/filed)
 |− findlib (links to src/findlib)
 |− lib (links to src/lib)
 |− console (beginning of native console program)
 |− wx−console (wxWidget console Win32 specific parts)
 |− wx−console (wxWidgets console main source program)

|− regress (Regression scripts)
 |− bin (temporary directory to hold Bacula installed binaries)
 |− build (temporary directory to hold Bacula source)
 |− scripts (scripts and .conf files)
 |− tests (test scripts)
 |− tmp (temporary directory for temp files)

Header Files

Please carefully follow the scheme defined below as it permits in general only two header file
includes per C file, and thus vastly simplifies programming. With a large complex project like
Bacula, it isn't always easy to ensure that the right headers are invoked in the right order (there
are a few kludges to make this happen −− i.e. in a few include files because of the chicken and
egg problem, certain references to typedefs had to be replaced with void).

Every file should include bacula.h. It pulls in just about everything, with very few exceptions. If
you have system dependent ifdefing, please do it in baconfig.h. The version number and date are
kept in version.h.

Each of the subdirectories (console, cats, dird, filed, findlib, lib, stored, ...) contains a single
directory dependent include file generally the name of the directory, which should be included
just after the include of bacula.h. This file (for example, for the dird directory, it is dird.h)
contains either definitions of things generally needed in this directory, or it includes the
appropriate header files. It always includes protos.h. See below.

Each subdirectory contains a header file named protos.h, which contains the prototypes for
subroutines exported by files in that directory. protos.h is always included by the main directory
dependent include file.

Programming Standards

For the most part, all code should be written in C unless there is a burning reason to use C++,
and then only the simplest C++ constructs will be used. Note, Bacula is slowly evolving to use
more and more C++.

Code should have some documentation −− not a lot, but enough so that I can understand it. Look
at the current code, and you will see that I document more than most, but am definitely not a
fanatic.

I prefer simple linear code where possible. Gotos are strongly discouraged except for handling an
error to either bail out or to retry some code, and such use of gotos can vastly simplify the
program.

Bacula Storage Management System

Header Files 436

Remember this is a C program that is migrating to a tiny subset of C++, so be conservative in
your use of C++ features.

Do Not Use

STL −− it is totally incomprehensible.•

Avoid if Possible

Returning a malloc'ed buffer from a subroutine −− someone will forget to release it.•
Using reference variables −− it allows subroutines to create side effects.•
Heap allocation (malloc) unless needed −− it is expensive.•
Templates −− they can create portability problems.•
Fancy or tricky C or C++ code, unless you give a good explanation of why you used it.•
Too much inheritance −− it can complicate the code, and make reading it difficult
(unless you are in love with colons)

•

Do Use Whenever Possible

Locking and unlocking within a single subroutine.•
Malloc and free within a single subroutine.•
Comments and global explanations on what your code or algorithm does.•

Indenting Standards

I cannot stand code indented 8 columns at a time. This makes the code unreadable. Even 4 at a
time uses a lot of space, so I have adopted indenting 3 spaces at every level. Note, indention is
the visual appearance of the source on the page, while tabbing is replacing a series of up to 8
spaces from a tab character.

The closest set of parameters for the Linux indent program that will produce reasonably indented
code are:

−nbad −bap −bbo −nbc −br −brs −c36 −cd36 −ncdb −ce −ci3 −cli0
−cp36 −d0 −di1 −ndj −nfc1 −nfca −hnl −i3 −ip0 −l85 −lp −npcs
−nprs −npsl −saf −sai −saw −nsob −nss −nbc −ncs −nbfda

You can put the above in your .indent.pro file, and then just invoke indent on your file. However,
be warned. This does not produce perfect indenting, and it will mess up C++ class statements
pretty badly.

Braces are required in all if statements (missing in some very old code). To avoid generating too
many lines, the first brace appears on the first line (e.g. of an if), and the closing brace is on a
line by itself. E.g.

 if (abc) {
 some_code;
 }

Just follow the convention in the code. Originally I indented case clauses under a switch(), but
now I prefer non−indented cases.

Bacula Storage Management System

Do Not Use 437

 switch (code) {
 case 'A':
 do something
 break;
 case 'B':
 again();
 break;
 default:
 break;
 }

Avoid using // style comments except for temporary code or turning off debug code. Standard C
comments are preferred (this also keeps the code closer to C).

Attempt to keep all lines less than 85 characters long so that the whole line of code is readable at
one time. This is not a rigid requirement.

Always put a brief description at the top of any new file created describing what it does and
including your name and the date it was first written. Please don't forget any Copyrights and
acknowledgments if it isn't 100% your code. Also, include the Bacula copyright notice that is in
src/c.

In general you should have two includes at the top of the file. One is #include "bacula.h" and
the second is an include for the particular directory the code is in, for example, #include
"dird.h". Sometimes additional includes are needed, but this should be rare.

In general (except for self−contained packages), prototypes should all be put in protos.h in each
directory.

Always put space around assignment and comparison operators.

 a = 1;
 if (b >= 2) {
 cleanup();
 }

but your can compress things in a for statement:

 for (i=0; i <del.num_ids; i++) {
 ...

Don't overuse the inline if (?:). A full if is preferred, except in a print statement, e.g.:

 if (ua−>verbose &del.num_del != 0) {
 bsendmsg(ua, _("Pruned %d %s on Volume %s from catalog.\n"), del.num_del,
 del.num_del == 1 ? "Job" : "Jobs", mr−>VolumeName);
 }

Leave a certain amount of debug code (Dmsg) in code you submit, so that future problems can be
identified. This is particularly true for complicated code likely to break. However, try to keep the
debug code to a minimum to avoid bloating the program and above all to keep the code readable.

Please keep the same style in all new code you develop. If you include code previously written,
you have the option of leaving it with the old indenting or re−indenting it. If the old code is

Bacula Storage Management System

Do Not Use 438

indented with 8 spaces, then please re−indent it to Bacula standards.

If you are using vim, simply set your tabstop to 8 and your shiftwidth to 3.

Tabbing

Tabbing (inserting the tab character in place of spaces) is as normal on all Unix systems −− a tab
is converted space up to the next column multiple of 8. My editor converts strings of spaces to
tabs automatically −− this results in significant compression of the files. Thus, you can remove
tabs by replacing them with spaces if you wish. Please don't confuse tabbing (use of tab
characters) with indenting (visual alignment of the code).

Don'ts

Please don't use:

strcpy()
strcat()
strncpy()
strncat();
sprintf()
snprintf()

They are system dependent and un−safe. These should be replaced by the Bacula safe
equivalents:

char *bstrncpy(char *dest, char *source, int dest_size);
char *bstrncat(char *dest, char *source, int dest_size);
int bsnprintf(char *buf, int32_t buf_len, const char *fmt, ...);
int bvsnprintf(char *str, int32_t size, const char *format, va_list ap);

See src/lib/bsys.c for more details on these routines.

Don't use the %lld or the %q printf format editing types to edit 64 bit integers −− they are not
portable. Instead, use %s with edit_uint64(). For example:

 char buf[100];
 uint64_t num = something;
 char ed1[50];

 bsnprintf(buf, sizeof(buf), "Num=%s\n", edit_uint64(num, ed1));

The edit buffer ed1 must be at least 27 bytes long to avoid overflow. See src/lib/edit.c for more
details. If you look at the code, don't start screaming that I use lld. I actually use subtle trick
taught to me by John Walker. The lld that appears in the editing routine is actually #define to a
what is needed on your OS (usually "lld" or "q") and is defined in autoconf/configure.in for each
OS. C string concatenation causes the appropriate string to be concatenated to the "%".

Also please don't use the STL or Templates or any complicated C++ code.

Bacula Storage Management System

Tabbing 439

Message Classes

Currently, there are four classes of messages: Debug, Error, Job, and Memory.

Debug Messages

Debug messages are designed to be turned on at a specified debug level and are always sent to
STDOUT. There are designed to only be used in the development debug process. They are coded
as:

DmsgN(level, message, arg1, ...)

where the N is a number indicating how many arguments are to be substituted into the message
(i.e. it is a count of the number arguments you have in your message −− generally the number of
percent signs (%)). level is the debug level at which you wish the message to be printed. message
is the debug message to be printed, and arg1, ... are the arguments to be substituted. Since not all
compilers support #defines with varargs, you must explicitly specify how many arguments you
have.

When the debug message is printed, it will automatically be prefixed by the name of the daemon
which is running, the filename where the Dmsg is, and the line number within the file.

Some actual examples are:

Dmsg2(20, "MD5len=%d MD5=%s\n", strlen(buf), buf);

Dmsg1(9, "Created client %s record\n", client−>hdr.name);

Error Messages

Error messages are messages that are related to the daemon as a whole rather than a particular
job. For example, an out of memory condition my generate an error message. They are coded as:

EmsgN(error−code, level, message, arg1, ...)

As with debug messages, you must explicitly code the of arguments to be substituted in the
message. error−code indicates the severity or class of error, and it may be one of the following:

M_ABORT
Causes the daemon to immediately abort. This should be used only in
extreme cases. It attempts to produce a traceback.

M_ERROR_TERM
Causes the daemon to immediately terminate. This should be used only
in extreme cases. It does not produce a traceback.

M_FATAL
Causes the daemon to terminate the current job, but the daemon keeps
running

M_ERROR Reports the error. The daemon and the job continue running

M_WARNING Reports an warning message. The daemon and the job continue running

Bacula Storage Management System

Debug Messages 440

M_INFO Reports an informational message.

There are other error message classes, but they are in a state of being redesigned or deprecated,
so please do not use them. Some actual examples are:

Emsg1(M_ABORT, 0, "Cannot create message thread: %s\n", strerror(status));

Emsg3(M_WARNING, 0, "Connect to File daemon %s at %s:%d failed. Retrying ...\n",
client−>hdr.name, client−>address, client−>port);

Emsg3(M_FATAL, 0, "bdird<filed: bad response from Filed to %s command: %d %s\n", cmd, n,
strerror(errno));

Job Messages

Job messages are messages that pertain to a particular job such as a file that could not be saved,
or the number of files and bytes that were saved.

Memory Messages

Memory messages are messages that are edited into a memory buffer. Generally they are used in
low level routines such as the low level device file dev.c in the Storage daemon or in the low
level Catalog routines. These routines do not generally have access to the Job Control Record
and so they return error messages reformatted in a memory buffer. Mmsg() is the way to do this.

Internal Component Designs Index Porting Notes

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula Developer Notes Index Bacula Regression Testing

Bacula Storage Management System

Job Messages 441

http://www.bacula.org/

Bacula Porting Notes

General

This document is intended mostly for developers who wish to port Bacula to a system that is not
officially supported.

It is hoped that Bacula clients will eventually run on every imaginable system that needs backing
up (perhaps even a Palm). It is also hoped that the Bacula Directory and Storage daemons will
run on every system capable of supporting them.

Requirements

In General, the following holds true:

Bacula has been compiled and run on Linux RedHat, FreeBSD, and Solaris systems.•
In addition, clients exist on Win32 (Cygwin), and Irix•
It requires GNU C++ to compile. You can try with other compilers, but you are on your
own. The Irix client is built with the Irix complier, but, in general, you will need GNU.

•

Your compiler must provide support for 64 bit signed and unsigned integers.•
You will need a recent copy of the autoconf tools loaded on your system (version 2.13
or later). The autoconf tools are used to build the configuration program, but are not part
of the Bacula source distribution.

•

There are certain third party packages that Bacula needs. Except for MySQL, they can all
be found in the depkgs and depkgs1 releases.

•

If you want to build the Win32 binaries, you will need the full Cygwin 1.5.5 release.
Although all components build (console has some warnings), only the File daemon has
been tested. Please note that if you attempt to build Bacula on any other version of
Cygwin, particularly previous versions, you will be on your own.

•

Bacula requires a good implementation of pthreads to work.•
The source code has been written with portability in mind and is mostly POSIX
compatible. Thus porting to any POSIX compatible operating system should be
relatively easy.

•

Steps to Take

The first step is to ensure that you have version 2.13 or later of the autoconf tools
loaded. You can skip this step, but making changes to the configuration program will be
difficult or impossible.

•

The run a ./configure command in the main source directory and examine the output. It
should look something like the following:

•

Configuration on Mon Oct 28 11:42:27 CET 2002:

 Host: i686−pc−linux−gnu −− redhat 7.3
 Bacula version: 1.27 (26 October 2002)
 Source code location: .
 Install binaries: /sbin
 Install config files: /etc/bacula
 C Compiler: gcc

Bacula Porting Notes 442

 C++ Compiler: c++
 Compiler flags: −g −O2
 Linker flags:
 Libraries: −lpthread
 Statically Linked Tools: no
 Database found: no
 Database type: Internal
 Database lib:

 Job Output Email: root@localhost
 Traceback Email: root@localhost
 SMTP Host Address: localhost
 Director Port 9101
 File daemon Port 9102
 Storage daemon Port 9103
 Working directory /etc/bacula/working
 SQL binaries Directory

 Large file support: yes
 readline support: yes
 cweb support: yes /home/kern/bacula/depkgs/cweb
 TCP Wrappers support: no
 ZLIB support: yes
 enable−smartalloc: yes
 enable−gnome: no
 gmp support: yes

The details depend on your system. The first thing to check is that it properly identified
your host on the Host: line. The first part (added in version 1.27) is the GNU four part
identification of your system. The part after the −− is your system and the system
version. Generally, if your system is not yet supported, you must correct these.
If the ./configure does not function properly, you must determine the cause and fix it.
Generally, it will be because some required system routine is not available on your
machine.

•

To correct problems with detection of your system type or with routines and libraries,
you must edit the file <bacula−src>/autoconf/configure.in. This is the "source" from
which configure is built. In general, most of the changes for your system will be made in
autoconf/aclocal.m4 in the routine BA_CHECK_OPSYS or in the routine
BA_CHECK_OPSYS_DISTNAME. I have already added the necessary code for most
systems, but if yours shows up as unknown you will need to make changes. Then as
mentioned above, you will need to set a number of system dependent items in
configure.in in the case statement at approximately line 1050 (depending on the Bacula
release).

•

The items to in the case statement that corresponds to your system are the following:
DISTVER −− set to the version of your operating system. Typically some form
of uname obtains it.

♦

TAPEDRIVE −− the default tape drive. Not too important as the user can set it
as an option.

♦

PSCMD −− set to the ps command that will provide the PID in the first field and
the program name in the second field. If this is not set properly, the bacula stop
script will most likely not be able to stop Bacula in all cases.

♦

hostname −− command to return the base host name (non−qualified) of your
system. This is generally the machine name. Not too important as the user can
correct this in his configuration file.

♦

•

Bacula Storage Management System

Bacula Porting Notes 443

CFLAGS −− set any special compiler flags needed. Many systems need a special
flag to make pthreads work. See cygwin for an example.

♦

LDFLAGS −− set any special loader flags. See cygwin for an example.♦
PTHREAD_LIB −− set for any special pthreads flags needed during linking. See
freebsd as an example.

♦

lld −− set so that a "long long int" will be properly edited in a printf() call.♦
llu −− set so that a "long long unsigned" will be properly edited in a printf() call.♦
PFILES −− set to add any files that you may define is your platform
subdirectory. These files are used for installation of automatic system startup of
Bacula daemons.

♦

To rebuild a new version of configure from a changed autoconf/configure.in you enter
make configure in the top level Bacula source directory. You must have done a
./configure prior to trying to rebuild the configure script or it will get into an infinite
loop.

•

If the make configure gets into an infinite loop, ctl−c it, then do ./configure (no options
are necessary) and retry the make configure, which should now work.

•

To rebuild configure you will need to have autoconf version 2.57−3 or higher loaded.
Older versions of autoconf will complain about unknown or bad options, and won't
work.

•

After you have a working configure script, you may need to make a few system
dependent changes to the way Bacula works. Generally, these are done in
src/baconfig.h. You can find a few examples of system dependent changes toward the
end of this file. For example, on Irix systems, there is no definition for socklen_t, so it is
made in this file. If your system has structure alignment requirements, check the
definition of BALIGN in this file. Currently, all Bacula allocated memory is aligned on a
double boundary.

•

If you are having problems with Bacula's type definitions, you might look at
src/bc_types.h where all the types such as uint32_t, uint64_t, etc. that Bacula uses are
defined.

•

Bacula Developer Notes Index Bacula Regression Testing

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Porting Bacula Index Implementing a GUI

Bacula Storage Management System

Bacula Porting Notes 444

http://www.bacula.org/

Bacula Regression Testing

General

This document is intended mostly for developers who wish to ensure that their changes to Bacula
don't introduce bugs in the base code.

You can find the existing regression script in the Bacula CVS on the SourceForge CVS in the
project tree named regress.

There are two different aspects of regression testing that this document will discuss: 1. Running
the Regression Script, 2. Writing a Regression test.

Running the Regression Script

There are a number of different tests that may be run, such as: the standard set that uses disk
Volumes and runs under any userid; a small set of tests that write to tape; another set of tests
where you must be root to run them. To date, each subset of tests runs no more than about 15
minutes.

Setting the Configuration Parameters

Once you have the regression directory loaded, you will first need to create a custom xxx.conf
file for your system. You can either edit prototype.conf directly or copy it to a new file and edit
it. To see a real example of a configuration file, look at kern.conf. The variables you need to
modify are:

Where to get the source to be tested
BACULA_SOURCE="${HOME}/bacula/k"

Where to send email !!!! Change me !!!!!!!
EMAIL=your−email@domain.com

Full path where to find sqlite
DEPKGS="${HOME}/bacula/depkgs/sqlite"

TAPE_DRIVE="/dev/nst0"

if you don't have an autochanger set
AUTOCHANGER to /dev/null
AUTOCHANGER="/dev/sg0"

This must be the path to the autochanger
including its name
AUTOCHANGER_PATH="/bin/mtx"

BACULA_SOURCE should be the full path to the Bacula source code that you wish to
test.

•

EMAIL should be your email addres. Please remember to change this or I will get a
flood of unwanted messages. You may or may not want to see these emails. In my case, I

•

Bacula Regression Testing 445

don't need them so I direct it to the bit bucket.
SQLITE_DIR should be the full path to the sqlite package, must be build before
running a Bacula regression, if you are using SQLite. This variable is ignored if you are
using MySQL or PostgreSQL. To use PostgreSQL, edit the Makefile and change (or
add) WHICHDB?="−−with−postgresql". For MySQL use
"WHICHDB?="−−with−mysql".

•

TAPE_DRIVE is the full path to your tape drive. The base set of regression tests do not
use a tape, so this is only important if you want to run the full tests.

•

AUTOCHANGER is the name of your autochanger device. Set this to /dev/null if you
do not have one.

•

AUTOCHANGER_PATH is the full path including the program name for your
autochanger program (normally mtx. Leave the default value if you do not have one.

•

Building the Test Bacula

Once the above variables are set, you can build Bacula by entering:

./config xxx.conf
make setup

Where xxx.conf is the name of the conf file containing your system parameters. This will build a
Makefile from Makefile.in, then copy the source code within the regression tree (in directory
regress/build), configure it, and build it. There should be no errors. If there are, please correct
them before continuing.

Running the Disk Only Regression

Once Bacula is built, you can run the basic disk only non−root regression test by entering:

make test

This will run the base set of tests using disk Volumes, currently (19 Dec 2003), there are current
18 separate tests that run. If you are testing on a non−Linux machine two of the tests will not be
run. In any case, as we add new tests, the number will vary. It will take about 5 or 10 minutes if
you have a fast (2 GHz) machine, and you don't need to be root to run these tests (I run under my
regular userid). The result should be something similar to:

Test results

 ===== Backup Bacula Test OK =====
 ===== Verify Volume Test OK =====
 ===== sparse−test OK =====
 ===== compressed−test OK =====
 ===== sparse−compressed−test OK =====
 ===== Weird files test OK =====
 ===== two−jobs−test OK =====
 ===== two−vol−test OK =====
 ===== six−vol−test OK =====
 ===== bscan−test OK =====
 ===== Weird files2 test OK =====
 ===== concurrent−jobs−test OK =====
 ===== four−concurrent−jobs−test OK =====
 ===== bsr−opt−test OK =====
 ===== bextract−test OK =====

Bacula Storage Management System

Building the Test Bacula 446

 ===== recycle−test OK =====
 ===== span−vol−test OK =====
 ===== restore−by−file−test OK =====
 ===== restore2−by−file−test OK =====
 ===== four−jobs−test OK =====
 ===== incremental−test OK =====

and the working tape tests are:

Test results

 ===== Bacula tape test OK =====
 ===== Small File Size test OK =====
 ===== restore−by−file−tape test OK =====
 ===== incremental−tape test OK =====
 ===== four−concurrent−jobs−tape OK =====
 ===== four−jobs−tape OK =====

Each separate test is self contained in that it initializes to run Bacula from scratch (i.e. newly
created database). It will also kill any Bacula session that is currently running. In addition, it uses
ports 8101, 8102, and 8103 so that it does not intefere with a production system.

Other Tests

There are a number of other tests that can be run as well. All the tests are a simply shell script
keep in the regress directory. For example the "make test" simply executes ./all−non−root−tests.
The other tests are:

all_non−root−tests
All non−tape tests not requiring root. This is the standard set of tests, that in general,
backup some data, then restore it, and finally compares the restored data with the original
data.

all−root−tests
All non−tape tests requiring root permission. These are a relatively small number of tests
that require running as root. The amount of data backed up can be quite large. For
example, one test backs up /usr, another backs up /etc. One or more of these tests reports
an error −− I'll fix it one day.

all−non−root−tape−tests
All tape test not requiring root. There are currently three tests, all run without being root,
and backup to a tape. The first two tests use one volume, and the third test requires an
autochanger, and uses two volumes. If you don't have an autochanger, then this script
will probably produce an error.

all−tape−and−file−tests
All tape and file tests not requiring root. This includes just about everything, and I don't
run it very often.

If a Test Fails

If you one or more tests fail, the line output will be similar to:

 !!!!! concurrent−jobs−test failed!!! !!!!!

Bacula Storage Management System

Other Tests 447

If you want to determine why the test failed, you will need to modify the script so that it prints.
Do so by finding the file in regress/tests that corresponds to the name printed. For example, the
script for the above error message is in: regress/tests/concurrent−jobs−test.

In order to see the output produced by Bacula, you need only change the lines that start with
@output to @tee, then rerun the test by hand. it is very important to start the test from the
regress directory.

To modify the test mentioned above so that you can see the output, change every occurrence of
@output to @tee in the file. In rare cases you might need to remove the 2>&1 >/dev/null from
the end of the bacula, bconsole, or diff lines, but this is rare.

Writing a Regression Test

Any developer, who implements a major new feature, should write a regression test that
exercises and validates the new feature. Each regression test is a complete test by itself. It
terminates any running Bacula, initializes the database, starts Bacula, then runs the test by using
the console program.

Running the Tests by Hand

You can run any individual test by hand by cd'ing to the regress directory and entering:

tests/<test−name>

Directory Structure

The directory structure of the regression tests is:

 regress − Makefile, scripts to start tests
 |−−−−−− scripts − Scripts and conf files
 |−−−−−−−tests − All test scripts are here
 |
 |−−−−−−−−−−−−−−−−−− −− All directories below this point are used
 | for testing, but are created from the
 | above directories and are removed with
 | "make distclean"
 |
 |−−−−−− bin − This is the install directory for
 | Bacula to be used testing
 |−−−−−− build − Where the Bacula source build tree is
 |−−−−−− tmp − Most temp files go here
 |−−−−−− working − Bacula working directory
 |−−−−−− weird−files − Weird files used in two of the tests.

Adding a New Test

If you want to write a new regression test, it is best to start with one of the existing test scripts,
and modify it to do the new test.

When adding a new test, be extremely careful about adding anything to any of the daemons'
configuration files. The reason is that it may change the prompts that are sent to the console. For

Bacula Storage Management System

Writing a Regression Test 448

example, adding a Pool means that the current scripts, which assume that Bacula automatically
selects a Pool, will now be presented with a new prompt, so the test will fail. If you need to
enhance the configuration files, consider making your own versions.

Porting Bacula Index Implementing a GUI

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula Regression Testing Index Bacula Daemon Protocol

Bacula Storage Management System

Writing a Regression Test 449

http://www.bacula.org/

Implementing a Bacula GUI Interface

General

This document is intended mostly for developers who wish to develop a new GUI interface to
Bacula.

Minimal Code in Console Program

Until now, I have kept all the Catalog code in the Directory (with the exception of dbcheck and
bscan). This is because at some point I would like to add user level security and access. If we
have code spread everywhere such as in a GUI this will be more difficult. The other advantage is
that any code you add to the Director is automatically available to both the tty console program
and the GNOME program. The major disadvantage is it increases the size of the code −−
however, compared to Networker the Bacula Director is really tiny.

GUI Interface is Difficult

Interfacing to an interactive program such as Bacula can be very difficult because the interfacing
program must interpret all the prompts that may come. This can be next to impossible. There are
are a number of ways that Bacula is designed to facilitate this:

The Bacula network protocol is packet based, and thus pieces of information sent can be
ASCII or binary.

•

The packet interface permits knowing where the end of a list is.•
The packet interface permits special "signals" to be passed rather than data.•
The Director has a number of commands that are non−interactive. They all begin with a
period, and provide things such as the list of all Jobs, list of all Clients, list of all Pools,
list of all Storage, ... Thus the GUI interface can get to virtually all information that the
Director has in a deterministic way. See <bacula−source>/src/dird/ua_dotcmds.c for
more details on this.

•

Most console commands allow all the arguments to be specified on the command line:
e.g. run job=NightlyBackup level=Full

•

One of the first things to overcome is to be able to establish a conversation with the Director.
Although you can write all your own code, it is probably easier to use the Bacula subroutines.
The following code is used by the Console program to begin a conversation.

#include "bacula.h"
static BSOCK *UA_sock = NULL;
static JCR *jcr;
...
 read−your−config−getting−address−and−pasword;

 UA_sock = bnet_connect(NULL, 5, 15, "Director daemon", dir−>address,
 NULL, dir−>DIRport, 0);
 if (UA_sock == NULL) {
 terminate_console(0);
 return 1;
 }
 jcr.dir_bsock = UA_sock;

Implementing a Bacula GUI Interface 450

 if (!authenticate_director(dir)) {
 fprintf(stderr, "ERR=%s", UA_sock−>msg);
 terminate_console(0);
 return 1;
 }
 read_and_process_input(stdin, UA_sock);
 if (UA_sock) {
 bnet_sig(UA_sock, BNET_TERMINATE); /* send EOF */
 bnet_close(UA_sock);
 }
 exit 0;

Then the read_and_process_input routine looks like the following:

 get−input−to−send−to−the−Director;
 bnet_fsend(UA_sock, "%s", input);
 stat = bnet_recv(UA_sock);
 process−output−from−the−Director;

For a GUI program things will be a bit more complicated. Basically in the very inner loop, you
will need to check and see if any output is available on the UA_sock. For an example, please take
a look at the GNOME GUI interface code in: <bacula−sourcesole/console.c

Bacula Regression Testing Index Bacula Daemon Protocol

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Porting Notes Index Storage Media Output Format

Bacula Storage Management System

Implementing a Bacula GUI Interface 451

http://www.bacula.org/

Daemon Protocol

General

This document describes the protocols used between the various daemons. As Bacula has
developed, it has become quite out of date. The general idea still holds true, but the details of the
fields for each command, and indeed the commands themselves have changed considerably.

It is intended to be a technical discussion of the general daemon protocols and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

Low Level Network Protocol

At the lowest level, the network protocol is handled by BSOCK packets which contain a lot of
information about the status of the network connection: who is at the other end, etc. Each basic
Bacula network read or write actually consists of two low level network read/writes. The first
write always sends four bytes of data in machine independent byte order. If data is to follow, the
first four bytes are a positive non−zero integer indicating the length of the data that follow in the
subsequent write. If the four byte integer is zero or negative, it indicates a special request, a sort
of network signaling capability. In this case, no data packet will follow. The low level BSOCK
routines expect that only a single thread is accessing the socket at a time. It is advised that
multiple threads do not read/write the same socket. If you must do this, you must provide some
sort of locking mechanism. I would not be appropriate for efficiency reasons to make every call
to the BSOCK routines lock and unlock the packet.

General Daemon Protocol

In general, all the daemons follow the following global rules. There may be exceptions
depending on the specific case. Normally, one daemon will be sending commands to another
daemon (specifically, the Director to the Storage daemon and the Director to the File daemon).

Commands are always ASCII commands that are upper/lower case dependent as well as
space sensitive.

•

All binary data is converted into ASCII (either with printf statements or using base64
encoding).

•

All responses to commands sent are always prefixed with a return numeric code where
codes in the 1000's are reserved for the Director, the 2000's are reserved for the File
daemon, and the 3000's are reserved for the Storage daemon.

•

Any response that is not prefixed with a numeric code is a command (or subcommand if
you like) coming from the other end. For example, while the Director is corresponding
with the Storage daemon, the Storage daemon can request Catalog services from the
Director. This convention permits each side to send commands to the other daemon
while simultaneously responding to commands.

•

Any response that is of zero length, depending on the context, either terminates the data
stream being sent or terminates command mode prior to closing the connection.

•

Any response that is of negative length is a special sign that normally requires a
response. For example, during data transfer from the File daemon to the Storage daemon,
normally the File daemon sends continuously without intervening reads. However,

•

Daemon Protocol 452

periodically, the File daemon will send a packet of length −1 indicating that the current
data stream is complete and that the Storage daemon should respond to the packet with
an OK, ABORT JOB, PAUSE, etc. This permits the File daemon to efficiently send data
while at the same time occasionally "polling" the Storage daemon for his status or any
special requests.

Currently, these negative lengths are specific to the daemon, but shortly, the range 0 to −999 will
be standard daemon wide signals, while −1000 to −1999 will be for Director user, −2000 to
−2999 for the File daemon, and −3000 to −3999 for the Storage daemon.

The Protocol Used Between the Director and the Storage
Daemon

Before sending commands to the File daemon, the Director opens a Message channel with the
Storage daemon, identifies itself and presents its password. If the password check is OK, the
Storage daemon accepts the Director. The Director then passes the Storage daemon, the JobId to
be run as well as the File daemon authorization (append, read all, or read for a specific session).
The Storage daemon will then pass back to the Director a enabling key for this JobId that must be
presented by the File daemon when opening the job. Until this process is complete, the Storage
daemon is not available for use by File daemons.

SD: listens
DR: makes connection
DR: Hello <Director−name> calling <password>
SD: 3000 OK Hello
DR: JobId=nnn Allow=(append, read) Session=(*, SessionId)
 (Session not implemented yet)
SD: 3000 OK Job Authorization=<password>
DR: use device=<device−name> media_type=<media−type> pool_name=<pool−name> pool_type=<pool_type>
SD: 3000 OK use device

For the Director to be authorized, the <Director−name> and the <password> must match the
values in one of the Storage daemon's Director resources (there may be several Directors that can
access a single Storage daemon).

The Protocol Used Between the Director and the File
Daemon

A typical conversation might look like the following:

FD: listens
DR: makes connection
DR: Hello <Director−name> calling <password>
FD: 2000 OK Hello
DR: JobId=nnn Authorization=<password>
FD: 2000 OK Job
DR: storage address = <Storage daemon address> port = <port−number>
 name = <DeviceName> mediatype = <MediaType>
FD: 2000 OK storage
DR: include
DR: <directory1>
DR: <directory2>
 ...

Bacula Storage Management System

The Protocol Used Between the Director and the Storage Daemon 453

DR: Null packet
FD: 2000 OK include
DR: exclude
DR: <directory1>
DR: <directory2>
 ...
DR: Null packet
FD: 2000 OK exclude
DR: full
FD: 2000 OK full
DR: save
FD: 2000 OK save
FD: Attribute record for each file as sent to the
 Storage daemon (described above).
FD: Null packet
FD: <append close responses from Storage daemon>
 e.g.
 3000 OK Volumes = <number of volumes>
 3001 Volume = <volume−id> <start file> <start block>
 <end file> <end block> <volume session−id>
 3002 Volume data = <date/time of last write> <Number bytes written>
 <number errors>
 ... additional Volume / Volume data pairs for volumes 2 .. n
FD: Null packet

FD: close socket

The Save Protocol Between the File Daemon and the
Storage Daemon

Once the Storage daemon has issued the save command, the File daemon will contact the Storage
daemon to begin the save.

In what follows: FD: refers to information set via the network from the File daemon to the
Storage daemon, and SD: refers to information set from the Storage daemon to the File daemon.

Command and Control Information

Command and control information is exchanged in human readable ASCII commands.

FD: listens
SD: makes connection
FD: append open session = <JobId> [<password>]
SD: 3000 OK ticket = <number>
FD: append data <ticket−number>
SD: 3000 OK data address = <IPaddress> port = <port>

Data Information

The Data information consists of the file attributes and data to the Storage daemon. For the most
part, the data information is sent one way: from the File daemon to the Storage daemon. This
allows the File daemon to transfer information as fast as possible without a lot of handshaking
and network overhead.

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 454

However, from time to time, the File daemon needs to do a sort of checkpoint of the situation to
ensure that everything is going well with the Storage daemon. To do so, the File daemon sends a
packet with a negative length indicating that he wishes the Storage daemon to respond by
sending a packet of information to the File daemon. The File daemon then waits to receive a
packet from the Storage daemon before continuing.

All data sent are in binary format except for the header packet, which is in ASCII. There are two
packet types used data transfer mode: a header packet, the contents of which are known to the
Storage daemon, and a data packet, the contents of which are never examined by the Storage
daemon.

The first data packet to the Storage daemon will be an ASCII header packet consisting of the
following data.

<File−Index> <Stream−Id> <Info>

where <File−Index> is a sequential number beginning from one that increments with each file
(or directory) sent.

where <Stream−Id> will be 1 for the Attributes record and 2 for uncompressed File data. 3 is
reserved for the MD5 signature for the file.

where <Info> transmit information about the Stream to the Storage Daemon. It is a character
string field where each character has a meaning. The only character currently defined is 0 (zero),
which is simply a place holder (a no op). In the future, there will be codes indicating compressed
data, encrypted data, etc.

Immediately following the header packet, the Storage daemon will expect any number of data
packets. The series of data packets is terminated by a zero length packet, which indicates to the
Storage daemon that the next packet will be another header packet. As previously mentioned, a
negative length packet is a request for the Storage daemon to temporarily enter command mode
and send a reply to the File daemon. Thus an actual conversation might contain the following
exchanges:

FD: <1 1 0> (header packet)
FD: <data packet containing file−attributes>
FD: Null packet
FD: <1 2 0>
FD: <multiple data packets containing the file data>
FD: Packet length = −1
SD: 3000 OK
FD: <2 1 0>
FD: <data packet containing file−attributes>
FD: Null packet
FD: <2 2 0>
FD: <multiple data packets containing the file data>
FD: Null packet
FD: Null packet

FD: append end session <ticket−number>
SD: 3000 OK end
FD: append close session <ticket−number>
SD: 3000 OK Volumes = <number of volumes>

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 455

SD: 3001 Volume = <volumeid> <start file> <start block>
 <end file> <end block> <volume session−id>
SD: 3002 Volume data = <date/time of last write> <Number bytes written>
 <number errors>
SD: ... additional Volume / Volume data pairs for
 volumes 2 .. n
FD: close socket

The information returned to the File daemon by the Storage daemon in response to the append
close session is transmit in turn to the Director.

Porting Notes Index Storage Media Output Format

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula Daemon Protocol Index Bacula Memory Management

Bacula Storage Management System

The Save Protocol Between the File Daemon and the Storage Daemon 456

http://www.bacula.org/

Storage Media Output Format

General

This document describes the media format written by the Storage daemon. The Storage daemon
reads and writes in units of blocks. Blocks contain records. Each block has a block header
followed by records, and each record has a record header followed by record data.

This chapter is intended to be a technical discussion of the Media Format and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

Definitions

Block
A block represents the primitive unit of information that the Storage daemon reads and
writes to a physical device. Normally, for a tape device, it will be the same as a tape
block. The Storage daemon always reads and writes blocks. A block consists of block
header information followed by records. Clients of the Storage daemon (the File
daemon) normally never see blocks. However, some of the Storage tools (bls, bscan,
bextract, ...) may be use block header information. In older Bacula tape versions, a block
could contain records (see record definition below) from multiple jobs. However, all
blocks currently written by Bacula are block level BB02, and a given block contains
records for only a single job. Different jobs simply have their own private blocks that are
intermingled with the other blocks from other jobs on the Volume (previously the
records were intermingled within the blocks). Having only records from a single job in
any give block permitted moving the VolumeSessionId and VolumeSessionTime (see
below) from each record heading to the Block header. This has two advantages: 1. a
block can be quickly rejected based on the contents of the header without reading all the
records. 2. because there is on the average more than one record per block, less data is
written to the Volume for each job.

Record
A record consists of a Record Header, which is managed by the Storage daemon and
Record Data, which is the data received from the Client. A record is the primitive unit of
information sent to and from the Storage daemon by the Client (File daemon) programs.
The details are described below.

JobId
A number assigned by the Director daemon for a particular job. This number will be
unique for that particular Director (Catalog). The daemons use this number to keep track
of individual jobs. Within the Storage daemon, the JobId may not be unique if several
Directors are accessing the Storage daemon simultaneously.

Session
A Session is a concept used in the Storage daemon corresponds one to one to a Job with
the exception that each session is uniquely identified within the Storage daemon by a
unique SessionId/SessionTime pair (see below).

VolSessionId
A unique number assigned by the Storage daemon to a particular session (Job) it is
having with a File daemon. This number by itself is not unique to the given Volume, but
with the VolSessionTime, it is unique.

Storage Media Output Format 457

VolSessionTime
A unique number assigned by the Storage daemon to a particular Storage daemon
execution. It is actually the Unix time_t value of when the Storage daemon began
execution cast to a 32 bit unsigned integer. The combination of the VolSessionId and the
VolSessionTime for a given Storage daemon is guaranteed to be unique for each Job (or
session).

FileIndex
A sequential number beginning at one assigned by the File daemon to the files within a
job that are sent to the Storage daemon for backup. The Storage daemon ensures that this
number is greater than zero and sequential. Note, the Storage daemon uses negative
FileIndexes to flag Session Start and End Labels as well as End of Volume Labels. Thus,
the combination of VolSessionId, VolSessionTime, and FileIndex uniquely identifies the
records for a single file written to a Volume.

Stream
While writing the information for any particular file to the Volume, there can be any
number of distinct pieces of information about that file, e.g. the attributes, the file data,
... The Stream indicates what piece of data it is, and it is an arbitrary number assigned by
the File daemon to the parts (Unix attributes, Win32 attributes, data, compressed
data, ...) of a file that are sent to the Storage daemon. The Storage daemon has no
knowledge of the details of a Stream; it simply represents a numbered stream of bytes.
The data for a given stream may be passed to the Storage daemon in single record, or in
multiple records.

Block Header
A block header consists of a block identification ("BB02"), a block length in bytes
(typically 64,512) a checksum, and sequential block number. Each block starts with a
Block Header and is followed by Records. Current block headers also contain the
VolSessionId and VolSessionTime for the records written to that block.

Record Header
A record header contains the Volume Session Id, the Volume Session Time, the
FileIndex, the Stream, and the size of the data record which follows. The Record Header
is always immediately followed by a Data Record if the size given in the Header is
greater than zero. Note, for Block headers of level BB02 (version 1.27 and later), the
Record header as written to tape does not contain the Volume Session Id and the Volume
Session Time as these two fields are stored in the BB02 Block header. The in−memory
record header does have those fields for convenience.

Data Record
A data record consists of a binary stream of bytes and is always preceded by a Record
Header. The details of the meaning of the binary stream of bytes are unknown to the
Storage daemon, but the Client programs (File daemon) defines and thus knows the
details of each record type.

Volume Label
A label placed by the Storage daemon at the beginning of each storage volume. It
contains general information about the volume. It is written in Record format. The
Storage daemon manages Volume Labels, and if the client wants, he may also read them.

Begin Session Label
The Begin Session Label is a special record placed by the Storage daemon on the storage
medium as the first record of an append session job with a File daemon. This record is
useful for finding the beginning of a particular session (Job), since no records with the
same VolSessionId and VolSessionTime will precede this record. This record is not
normally visible outside of the Storage daemon. The Begin Session Label is similar to
the Volume Label except that it contains additional information pertaining to the

Bacula Storage Management System

Storage Media Output Format 458

Session.
End Session Label

The End Session Label is a special record placed by the Storage daemon on the storage
medium as the last record of an append session job with a File daemon. The End Session
Record is distinguished by a FileIndex with a value of minus two (−2). This record is
useful for detecting the end of a particular session since no records with the same
VolSessionId and VolSessionTime will follow this record. This record is not normally
visible outside of the Storage daemon. The End Session Label is similar to the Volume
Label except that it contains additional information pertaining to the Session.

Storage Daemon File Output Format

The file storage and tape storage formats are identical except that tape records are by default
blocked into blocks of 64,512 bytes, except for the last block, which is the actual number of
bytes written rounded up to a multiple of 1024 whereas the last record of file storage is not
rounded up. The default block size of 64,512 bytes may be overridden by the user (some older
tape drives only support block sizes of 32K). Each Session written to tape is terminated with an
End of File mark (this will be removed later). Sessions written to file are simply appended to the
end of the file.

Overall Format

A Bacula output file consists of Blocks of data. Each block contains a block header followed by
records. Each record consists of a record header followed by the record data. The first record on
a tape will always be the Volume Label Record.

No Record Header will be split across Bacula blocks. However, Record Data may be split across
any number of Bacula blocks. Obviously this will not be the case for the Volume Label which
will always be smaller than the Bacula Block size.

To simplify reading tapes, the Start of Session (SOS) and End of Session (EOS) records are
never split across blocks. If this is about to happen, Bacula will write a short block before writing
the session record (actually, the SOS record should always be the first record in a block,
excepting perhaps the Volume label).

Due to hardware limitations, the last block written to the tape may not be fully written. If your
drive permits backspace record, Bacula will backup over the last record written on the tape,
re−read it and verify that it was correctly written.

When a new tape is mounted Bacula will write the full contents of the partially written block to
the new tape ensuring that there is no loss of data. When reading a tape, Bacula will discard any
block that is not totally written, thus ensuring that there is no duplication of data. In addition,
since Bacula blocks are sequentially numbered within a Job, it is easy to ensure that no block is
missing or duplicated.

Serialization

All Block Headers, Record Headers, and Label Records are written using Bacula's serialization
routines. These routines guarantee that the data is written to the output volume in a machine

Bacula Storage Management System

Storage Daemon File Output Format 459

independent format.

Block Header

The format of the Block Header (version 1.27 and later) is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB02"; /* Identification and block level */
 uint32_t VolSessionId; /* Session Id for Job */
 uint32_t VolSessionTime; /* Session Time for Job */

The Block header is a fixed length and fixed format and is followed by Record Headers and
Record Data. The CheckSum field is a 32 bit checksum of the block data and the block header
but not including the CheckSum field. The Block Header is always immediately followed by a
Record Header. If the tape is damaged, a Bacula utility will be able to recover as much
information as possible from the tape by recovering blocks which are valid. The Block header is
written using the Bacula serialization routines and thus is guaranteed to be in machine
independent format. See below for version 2 of the block header.

Record Header

Each binary data record is preceded by a Record Header. The Record Header is fixed length and
fixed format, whereas the binary data record is of variable length. The Record Header is written
using the Bacula serialization routines and thus is guaranteed to be in machine independent
format.

The format of the Record Header (version 1.27 or later) is:

 int32_t FileIndex; /* File index supplied by File daemon */
 int32_t Stream; /* Stream number supplied by File daemon */
 uint32_t DataSize; /* size of following data record in bytes */

This record is followed by the binary Stream data of DataSize bytes, followed by another Record
Header record and the binary stream data. For the definitive definition of this record, see record.h
in the src/stored directory.

Additional notes on the above:

The VolSessionId
is a unique sequential number that is assigned by the Storage Daemon to a particular Job.
This number is sequential since the start of execution of the daemon.

The VolSessionTime
is the time/date that the current execution of the Storage Daemon started. It assures that
the combination of VolSessionId and VolSessionTime is unique for every jobs written to
the tape, even if there was a machine crash between two writes.

The FileIndex
is a sequential file number within a job. The Storage daemon requires this index to be
greater than zero and sequential. Note, however, that the File daemon may send multiple
Streams for the same FileIndex. In addition, the Storage daemon uses negative

Bacula Storage Management System

Block Header 460

FileIndices to hold the Begin Session Label, the End Session Label, and the End of
Volume Label.

The Stream
is defined by the File daemon and is used to identify separate parts of the data saved for
each file (Unix attributes, Win32 attributes, file data, compressed file data, sparse file
data, ...). The Storage Daemon has no idea of what a Stream is or what it contains except
that the Stream is required to be a positive integer. Negative Stream numbers are used
internally by the Storage daemon to indicate that the record is a continuation of the
previous record (the previous record would not entirely fit in the block).
For Start Session and End Session Labels (where the FileIndex is negative), the Storage
daemon uses the Stream field to contain the JobId. The current stream definitions are:

STREAM_UNIX_ATTRIBUTES 1 /* Generic Unix attributes */
STREAM_FILE_DATA 2 /* Standard uncompressed data */
STREAM_MD5_SIGNATURE 3 /* MD5 signature for the file */
STREAM_GZIP_DATA 4 /* GZip compressed file data */
STREAM_WIN32_ATTRIBUTES 5 /* Windows attributes (superset of Unix) */
STREAM_SPARSE_DATA 6 /* Sparse data stream */
STREAM_SPARSE_GZIP_DATA 7 /* Sparse data stream compressed by GZIP */
STREAM_PROGRAM_NAMES 8 /* program names for program data */
STREAM_PROGRAM_DATA 9 /* Data needing program */
STREAM_SHA1_SIGNATURE 10 /* SHA1 signature for the file */
STREAM_WIN32_DATA 11 /* Win32 BackupRead data */
STREAM_WIN32_GZIP_DATA 12 /* Gzipped Win32 BackupRead data */

The DataSize
is the size in bytes of the binary data record that follows the Session Record header. The
Storage Daemon has no idea of the actual contents of the binary data record. For
standard Unix files, the data record typically contains the file attributes or the file data.
For a sparse file the first 64 bits of the file data contains the storage address for the data
block.

The Record Header is never split across two blocks. If there is not enough room in a block for the
full Record Header, the block is padded to the end with zeros and the Record Header begins in
the next block. The data record, on the other hand, may be split across multiple blocks and even
multiple physical volumes. When a data record is split, the second (and possibly subsequent)
piece of the data is preceded by a new Record Header. Thus each piece of data is always
immediately preceded by a Record Header. When reading a record, if Bacula finds only part of
the data in the first record, it will automatically read the next record and concatenate the data
record to form a full data record.

Records no longer used:

The format of the Block Header (version 1.26 and earlier) is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB01"; /* Identification and block level */

The format of the Record Header (version 1.26 or earlier) is:

 uint32_t VolSessionId; /* Unique ID for this session */

Bacula Storage Management System

Block Header 461

 uint32_t VolSessionTime; /* Start time/date of session */
 int32_t FileIndex; /* File index supplied by File daemon */
 int32_t Stream; /* Stream number supplied by File daemon */
 uint32_t DataSize; /* size of following data record in bytes */

Version BB02 Block Header

The original block header BB01 was designed to hold records from multiple sessions. However,
it is simpler (and probably more efficient) for each session (Job) to have its own private block.
As a consequence, the SessionId and SessionTime can be written once in each Block Header and
not in the Record Header. So, the second and current version of the Block Header is:

 uint32_t CheckSum; /* Block check sum */
 uint32_t BlockSize; /* Block byte size including the header */
 uint32_t BlockNumber; /* Block number */
 char ID[4] = "BB02"; /* Identification and block level */
 uint32_t VolSessionId; /* Applies to all records */
 uint32_t VolSessionTime; /* contained in this block */

As with the previous version, the BB02 Block header is a fixed length and fixed format and is
followed by Record Headers and Record Data. The CheckSum field is a 32 bit CRC checksum of
the block data and the block header but not including the CheckSum field. The Block Header is
always immediately followed by a Record Header. If the tape is damaged, a Bacula utility will be
able to recover as much information as possible from the tape by recovering blocks which are
valid. The Block header is written using the Bacula serialization routines and thus is guaranteed
to be in machine independent format.

Version 2 Record Header

Version 2 Record Header is written to the medium when using Version BB02 Block Headers.
The memory representation of the record is identical to the old BB01 Record Header, but on the
storage medium, the first two fields, namely VolSessionId and VolSessionTime are not written.
The Block Header is filled with these values when the First user record is written (i.e. non label
record) so that when the block is written, it will have the current and unique VolSessionId and
VolSessionTime. On reading each record from the Block, the VolSessionId and VolSessionTime
is filled in the Record Header from the Block Header.

Volume Label Format

Tape volume labels are created by the Storage daemon in response to a label command given to
the Console program, or alternatively by the btape program. created. Each volume is labeled
with the following information using the Bacula serialization routines, which guarantee machine
byte order independence.

For Bacula versions 1.27 and later, the Volume Label Format is:

 char Id[32]; /* Bacula 1.0 Immortal\n */
 uint32_t VerNum; /* Label version number */

 /* VerNum 11 and greater Bacula 1.27 and later */
 btime_t label_btime; /* Time/date tape labeled */
 btime_t write_btime; /* Time/date tape first written */

Bacula Storage Management System

Version BB02 Block Header 462

 /* The following are 0 in VerNum 11 and greater */
 float64_t write_date; /* Date this label written */
 float64_t write_time; /* Time this label written */

 char VolName[128]; /* Volume name */
 char PrevVolName[128]; /* Previous Volume Name */
 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char MediaType[128]; /* Type of this media */

 char HostName[128]; /* Host name of writing computer */
 char LabelProg[32]; /* Label program name */
 char ProgVersion[32]; /* Program version */
 char ProgDate[32]; /* Program build date/time */

The following is no longer used, but Bacula can still read it. For Bacula versions 1.26 and earlier,
the Volume Label is:

 char Id[32]; /* Bacula 0.9 mortal\n */
 uint32_t VerNum; /* Label version number */

 float64_t label_date; /* Date tape labeled */
 float64_t label_time; /* Time tape labeled */

 float64_t write_date; /* Date this label written */
 float64_t write_time; /* Time this label written */

 char VolName[128]; /* Volume name */
 char PrevVolName[128]; /* Previous Volume Name */
 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char MediaType[128]; /* Type of this media */

 char HostName[128]; /* Host name of writing computer */
 char LabelProg[32]; /* Label program name */
 char ProgVersion[32]; /* Program version */
 char ProgDate[32]; /* Program build date/time */

Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the
record FileIndex field of the Record Header and does not appear in the data part of the record.

Session Label

The Session Label is written at the beginning and end of each session as well as the last record
on the physical medium. It has the following binary format:

 char Id[32]; /* Bacula Immortal ... */
 uint32_t VerNum; /* Label version number */

 uint32_t JobId; /* Job id */
 uint32_t VolumeIndex; /* sequence no of vol */

 /* Prior to VerNum 11 */
 float64_t write_date; /* Date this label written */

 /* VerNum 11 and greater */
 btime_t write_btime; /* time/date record written */

Bacula Storage Management System

Session Label 463

 /* The following is zero VerNum 11 and greater */
 float64_t write_time; /* Time this label written */

 char PoolName[128]; /* Pool name */
 char PoolType[128]; /* Pool type */
 char JobName[128]; /* base Job name */
 char ClientName[128];
 /* Added in VerNum 10 */
 char Job[128]; /* Unique Job name */
 char FileSetName[128]; /* FileSet name */
 uint32_t JobType;
 uint32_t JobLevel;

In addition, the EOS label contains:

 /* The remainder are part of EOS label only */
 uint32_t JobFiles;
 uint64_t JobBytes;
 uint32_t start_block;
 uint32_t end_block;
 uint32_t start_file;
 uint32_t end_file;
 uint32_t JobErrors;

In addition, for VerNum greater than 10, the EOS label contains (in addition to the above):

 uint32_t JobStatus /* Job termination code */

: Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the
record FileIndex field and does not appear in the data part of the record. Also, the Stream field of
the Record Header contains the JobId. This permits quick filtering without actually reading all
the session data in many cases.

Overall Storage Format

 Current Bacula Tape Format
 6 June 2001

 Version BB02 added 28 September 2002
 Version BB01 is the old deprecated format.

 A Bacula tape is composed of tape Blocks. Each block
 has a Block header followed by the block data. Block
 Data consists of Records. Records consist of Record
 Headers followed by Record Data.

 :===:
 | |
 | Block Header (24 bytes) |
 | (16 bytes version BB01) |
 |−−−|
 | |
 | Record Header (12 bytes) |
 | (20 bytes version BB01) |
 |−−−|

Bacula Storage Management System

Overall Storage Format 464

 | |
 | Record Data |
 | |
 |−−−|
 | |
 | Record Header (12 bytes) |
 | (20 bytes version BB01) |
 |−−−|
 | |
 | ... |

 Block Header: the first item in each block. The format is
 shown below.

 Partial Data block: occurs if the data from a previous
 block spills over to this block (the normal case except
 for the first block on a tape). However, this partial
 data block is always preceded by a record header.

 Record Header: identifies the Volume Session, the Stream
 and the following Record Data size. See below for format.

 Record data: arbitrary binary data.

 Block Header Format BB02
 :===:
 | CheckSum (uint32_t) |
 |−−−|
 | BlockSize (uint32_t) |
 |−−−|
 | BlockNumber (uint32_t) |
 |−−−|
 | "BB02" (char [4]) |
 |−−−|
 | VolSessionId (uint32_t) |
 |−−−|
 | VolSessionTime (uint32_t) |
 :===:

 BBO2: Serves to identify the block as a
 Bacula block and also servers as a block format identifier
 should we ever need to change the format.

 Block Header Format BB01 (deprecated)
 :===:
 | CheckSum (uint32_t) |
 |−−−|
 | BlockSize (uint32_t) |
 |−−−|
 | BlockNumber (uint32_t) |
 |−−−|
 | "BB01" (char [4]) |
 :===:

 BBO1: Serves to identify the block as a
 Bacula block and also servers as a block format identifier
 should we ever need to change the format.

Bacula Storage Management System

Overall Storage Format 465

 BlockSize: is the size in bytes of the block. When reading
 back a block, if the BlockSize does not agree with the
 actual size read, Bacula discards the block.

 CheckSum: a checksum for the Block.

 BlockNumber: is the sequential block number on the tape.

 VolSessionId: a unique sequential number that is assigned
 by the Storage Daemon to a particular Job.
 This number is sequential since the start
 of execution of the daemon.

 VolSessionTime: the time/date that the current execution
 of the Storage Daemon started. It assures
 that the combination of VolSessionId and
 VolSessionTime is unique for all jobs
 written to the tape, even if there was a
 machine crash between two writes.

 Record Header Format BB02
 :===:
 | FileIndex (int32_t) |
 |−−−|
 | Stream (int32_t) |
 |−−−|
 | DataSize (uint32_t) |
 :===:

 Record Header Format BB01 (deprecated)
 :===:
 | VolSessionId (uint32_t) |
 |−−−|
 | VolSessionTime (uint32_t) |
 |−−−|
 | FileIndex (int32_t) |
 |−−−|
 | Stream (int32_t) |
 |−−−|
 | DataSize (uint32_t) |
 :===:

 VolSessionId: a unique sequential number that is assigned
 by the Storage Daemon to a particular Job.
 This number is sequential since the start
 of execution of the daemon.

 VolSessionTime: the time/date that the current execution
 of the Storage Daemon started. It assures
 that the combination of VolSessionId and
 VolSessionTime is unique for all jobs
 written to the tape, even if there was a
 machine crash between two writes.

 FileIndex: a sequential file number within a job. The
 Storage daemon enforces this index to be
 greater than zero and sequential. Note,
 however, that the File daemon may send
 multiple Streams for the same FileIndex.

Bacula Storage Management System

Overall Storage Format 466

 The Storage Daemon uses negative FileIndices
 to identify Session Start and End labels
 as well as the End of Volume labels.

 Stream: defined by the File daemon and is intended to be
 used to identify separate parts of the data
 saved for each file (attributes, file data,
 ...). The Storage Daemon has no idea of
 what a Stream is or what it contains.

 DataSize: the size in bytes of the binary data record
 that follows the Session Record header.
 The Storage Daemon has no idea of the
 actual contents of the binary data record.
 For standard Unix files, the data record
 typically contains the file attributes or
 the file data. For a sparse file
 the first 64 bits of the data contains
 the storage address for the data block.

 Volume Label
 :===:
 | Id (32 bytes) |
 |−−−|
 | VerNum (uint32_t) |
 |−−−|
 | label_date (float64_t) |
 | label_btime (btime_t VerNum 11 |
 |−−−|
 | label_time (float64_t) |
 | write_btime (btime_t VerNum 11 |
 |−−−|
 | write_date (float64_t) |
 | 0 (float64_t) VerNum 11 |
 |−−−|
 | write_time (float64_t) |
 | 0 (float64_t) VerNum 11 |
 |−−−|
 | VolName (128 bytes) |
 |−−−|
 | PrevVolName (128 bytes) |
 |−−−|
 | PoolName (128 bytes) |
 |−−−|
 | PoolType (128 bytes) |
 |−−−|
 | MediaType (128 bytes) |
 |−−−|
 | HostName (128 bytes) |
 |−−−|
 | LabelProg (32 bytes) |
 |−−−|
 | ProgVersion (32 bytes) |
 |−−−|
 | ProgDate (32 bytes) |
 |−−−|
 :===:

 Id: 32 byte Bacula identifier "Bacula 1.0 immortal\n"

Bacula Storage Management System

Overall Storage Format 467

 (old version also recognized:)
 Id: 32 byte Bacula identifier "Bacula 0.9 mortal\n"

 LabelType (Saved in the FileIndex of the Header record).
 PRE_LABEL −1 Volume label on unwritten tape
 VOL_LABEL −2 Volume label after tape written
 EOM_LABEL −3 Label at EOM (not currently implemented)
 SOS_LABEL −4 Start of Session label (format given below)
 EOS_LABEL −5 End of Session label (format given below)

 VerNum: 11

 label_date: Julian day tape labeled
 label_time: Julian time tape labeled

 write_date: Julian date tape first used (data written)
 write_time: Julian time tape first used (data written)

 VolName: "Physical" Volume name

 PrevVolName: The VolName of the previous tape (if this tape is
 a continuation of the previous one).

 PoolName: Pool Name

 PoolType: Pool Type

 MediaType: Media Type

 HostName: Name of host that is first writing the tape

 LabelProg: Name of the program that labeled the tape

 ProgVersion: Version of the label program

 ProgDate: Date Label program built

 Session Label
 :===:
 | Id (32 bytes) |
 |−−−|
 | VerNum (uint32_t) |
 |−−−|
 | JobId (uint32_t) |
 |−−−|
 | write_btime (btime_t) VerNum 11 |
 | *write_date (float64_t) VerNum 10 |
 |−−−|
 | 0 (float64_t) VerNum 11 |
 | *write_time (float64_t) VerNum 10 |
 |−−−|
 | PoolName (128 bytes) |
 |−−−|
 | PoolType (128 bytes) |
 |−−−|
 | JobName (128 bytes) |
 |−−−|
 | ClientName (128 bytes) |

Bacula Storage Management System

Overall Storage Format 468

 |−−−|
 | Job (128 bytes) |
 |−−−|
 | FileSetName (128 bytes) |
 |−−−|
 | JobType (uint32_t) |
 |−−−|
 | JobLevel (uint32_t) |
 |−−−|
 | FileSetMD5 (50 bytes) VerNum 11 |
 |−−−|

 Additional fields in End Of Session Label

 |−−−|
 | JobFiles (uint32_t) |
 |−−−|
 | JobBytes (uint32_t) |
 |−−−|
 | start_block (uint32_t) |
 |−−−|
 | end_block (uint32_t) |
 |−−−|
 | start_file (uint32_t) |
 |−−−|
 | end_file (uint32_t) |
 |−−−|
 | JobErrors (uint32_t) |
 |−−−|
 | JobStatus (uint32_t) VerNum 11 |
 :===:

 * => fields deprecated

 Id: 32 byte Bacula Identifier "Bacula 1.0 immortal\n"

 LabelType (in FileIndex field of Header):
 EOM_LABEL −3 Label at EOM
 SOS_LABEL −4 Start of Session label
 EOS_LABEL −5 End of Session label

 VerNum: 11

 JobId: JobId

 write_btime: Bacula time/date this tape record written

 write_date: Julian date tape this record written − deprecated
 write_time: Julian time tape this record written − deprecated.

 PoolName: Pool Name

 PoolType: Pool Type

 MediaType: Media Type

 ClientName: Name of File daemon or Client writing this session
 Not used for EOM_LABEL.

Bacula Storage Management System

Overall Storage Format 469

Unix File Attributes

The Unix File Attributes packet consists of the following:

<File−Index> <Type> <Filename>@<File−Attributes>@<Link> @<Extended−Attributes@>

where

@
represents a byte containing a binary zero.

FileIndex
is the sequential file index starting from one assigned by the File daemon.

Type
is one of the following:
#define FT_LNKSAVED 1 /* hard link to file already saved */
#define FT_REGE 2 /* Regular file but empty */
#define FT_REG 3 /* Regular file */
#define FT_LNK 4 /* Soft Link */
#define FT_DIR 5 /* Directory */
#define FT_SPEC 6 /* Special file −− chr, blk, fifo, sock */
#define FT_NOACCESS 7 /* Not able to access */
#define FT_NOFOLLOW 8 /* Could not follow link */
#define FT_NOSTAT 9 /* Could not stat file */
#define FT_NOCHG 10 /* Incremental option, file not changed */
#define FT_DIRNOCHG 11 /* Incremental option, directory not changed */
#define FT_ISARCH 12 /* Trying to save archive file */
#define FT_NORECURSE 13 /* No recursion into directory */
#define FT_NOFSCHG 14 /* Different file system, prohibited */
#define FT_NOOPEN 15 /* Could not open directory */
#define FT_RAW 16 /* Raw block device */
#define FT_FIFO 17 /* Raw fifo device */

Filename
is the fully qualified filename.

File−Attributes
consists of the 13 fields of the stat() buffer in ASCII base64 format separated by spaces.
These fields and their meanings are shown below. This stat() packet is in Unix format,
and MUST be provided (constructed) for ALL systems.

Link
when the FT code is FT_LNK or FT_LNKSAVED, the item in question is a Unix link,
and this field contains the fully qualified link name. When the FT code is not FT_LNK
or FT_LNKSAVED, this field is null.

Extended−Attributes
The exact format of this field is operating system dependent. It contains additional or
extended attributes of a system dependent nature. Currently, this field is used only on
WIN32 systems where it contains a ASCII base64 representation of the
WIN32_FILE_ATTRIBUTE_DATA structure as defined by Windows. The fields in the
base64 representation of this structure are like the File−Attributes separated by spaces.

The File−attributes consist of the following:

Field No. Stat Name Unix Win98/NT MacOS

Bacula Storage Management System

Overall Storage Format 470

1 st_dev
Device number of
filesystem

Drive number vRefNum

2 st_ino Inode number Always 0 fileID/dirID

3 st_mode File mode File mode
777 dirs/apps; 666
docs; 444 locked docs

4 st_nlink
Number of links to
the file

Number of link (only
on NTFS)

Always 1

5 st_uid Owner ID Always 0 Always 0

6 st_gid Group ID Always 0 Always 0

7 st_rdev
Device ID for special
files

Drive No. Always 0

8 st_size File size in bytes File size in bytes
Data fork file size in
bytes

9 st_blksize Preferred block size Always 0 Preferred block size

10 st_blocks
Number of blocks
allocated

Always 0
Number of blocks
allocated

11 st_atime
Last access time since
epoch

Last access time since
epoch

Last access time −66
years

12 st_mtime
Last modify time
since epoch

Last modify time since
epoch

Last access time −66
years

13 st_ctime
Inode change time
since epoch

File create time since
epoch

File create time −66
years

Bacula Daemon Protocol Index Bacula Memory Management

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Storage Media Output Format Index Bacula TCP/IP Network Protocol

Bacula Storage Management System

Overall Storage Format 471

http://www.bacula.org/

Bacula Memory Management

General

This document describes the memory management routines that are used in Bacula and is meant
to be a technical discussion for developers rather than part of the user manual.

Since Bacula may be called upon to handle filenames of varying and more or less arbitrary
length, special attention needs to be used in the code to ensure that memory buffers are
sufficiently large. There are four possibilities for memory usage within Bacula. Each will be
described in turn. They are:

Statically allocated memory.•
Dynamically allocated memory using malloc() and free().•
Non−pooled memory.•
Pooled memory.•

Statically Allocated Memory

Statically allocated memory is of the form:

char buffer[MAXSTRING];

The use of this kind of memory is discouraged except when you are 100% sure that the strings to
be used will be of a fixed length. One example of where this is appropriate is for Bacula resource
names, which are currently limited to 127 characters (MAX_NAME_LENGTH). Although this
maximum size may change, particularly to accommodate Unicode, it will remain a relatively
small value.

Dynamically Allocated Memory

Dynamically allocated memory is obtained using the standard malloc() routines. As in:

char *buf;
buf = malloc(256);

This kind of memory can be released with:

free(buf);

It is recommended to use this kind of memory only when you are sure that you know the memory
size needed and the memory will be used for short periods of time −− that is it would not be
appropriate to use statically allocated memory. An example might be to obtain a large memory
buffer for reading and writing files. When SmartAlloc is enabled, the memory obtained by
malloc() will automatically be checked for buffer overwrite (overflow) during the free() call, and
all malloc'ed memory that is not released prior to termination of the program will be reported as
Orphaned memory.

Bacula Memory Management 472

Pooled and Non−pooled Memory

In order to facility the handling of arbitrary length filenames and to efficiently handle a high
volume of dynamic memory usage, we have implemented routines between the C code and the
malloc routines. The first is called "Pooled" memory, and is memory, which once allocated and
then released, is not returned to the system memory pool, but rather retained in a Bacula memory
pool. The next request to acquire pooled memory will return any free memory block. In addition,
each memory block has its current size associated with the block allowing for easy checking if
the buffer is of sufficient size. This kind of memory would normally be used in high volume
situations (lots of malloc()s and free()s) where the buffer length may have to frequently change
to adapt to varying filename lengths.

The non−pooled memory is handled by routines similar to those used for pooled memory,
allowing for easy size checking. However, non−pooled memory is returned to the system rather
than being saved in the Bacula pool. This kind of memory would normally be used in low
volume situations (few malloc()s and free()s), but where the size of the buffer might have to be
adjusted frequently.

Types of Memory Pool

Currently there are three memory pool types:

PM_NOPOOL −− non−pooled memory.•
PM_FNAME −− a filename pool.•
PM_MESSAGE −− a message buffer pool.•
PM_EMSG −− error message buffer pool.•

Getting Memory

To get memory, one uses:

void *get_pool_memory(pool);

where pool is one of the above mentioned pool names. The size of the memory returned will be
determined by the system to be most appropriate for the application.

If you wish non−pooled memory, you may alternatively call:

void *get_memory(size_t size);

The buffer length will be set to the size specified, and it will be assigned to the PM_NOPOOL
pool (no pooling).

Releasing Memory

To free memory acquired by either of the above two calls, use:

void free_pool_memory(void *buffer);

where buffer is the memory buffer returned when the memory was acquired. If the memory was
originally allocated as type PM_NOPOOL, it will be released to the system, otherwise, it will be

Bacula Storage Management System

Pooled and Non−pooled Memory 473

placed on the appropriate Bacula memory pool free chain to be used in a subsequent call for
memory from that pool.

Determining the Memory Size

To determine the memory buffer size, use:

size_t sizeof_pool_memory(void *buffer);

Resizing Pool Memory

To resize pool memory, use:

void *realloc_pool_memory(void *buffer);

The buffer will be reallocated, and the contents of the original buffer will be preserved, but the
address of the buffer may change.

Automatic Size Adjustment

To have the system check and if necessary adjust the size of your pooled memory buffer, use:

void *check_pool_memory_size(void *buffer, size_t new−size);

where new−size is the buffer length needed. Note, if the buffer is already equal to or larger than
new−size no buffer size change will occur. However, if a buffer size change is needed, the
original contents of the buffer will be preserved, but the buffer address may change. Many of the
low level Bacula subroutines expect to be passed a pool memory buffer and use this call to
ensure the buffer they use is sufficiently large.

Releasing All Pooled Memory

In order to avoid orphaned buffer error messages when terminating the program, use:

void close_memory_pool();

to free all unused memory retained in the Bacula memory pool. Note, any memory not returned
to the pool via free_pool_memory() will not be released by this call.

Pooled Memory Statistics

For debugging purposes and performance tuning, the following call will print the current
memory pool statistics:

void print_memory_pool_stats();

an example output is:

Pool Maxsize Maxused Inuse
 0 256 0 0
 1 256 1 0
 2 256 1 0

Bacula Storage Management System

Determining the Memory Size 474

Storage Media Output Format Index Bacula TCP/IP Network Protocol

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula Memory Management Index MD5 Algorithm

Bacula Storage Management System

Determining the Memory Size 475

http://www.bacula.org/

TCP/IP Network Protocol

General

This document describes the TCP/IP protocol used by Bacula to communicate between the
various daemons and services. The definitive definition of the protocol can be found in
src/lib/bsock.h, src/lib/bnet.c and src/lib/bnet_server.c.

Bacula's network protocol is basically a "packet oriented" protocol built on a standard TCP/IP
streams. At the lowest level all packet transfers are done with read() and write() requests on
system sockets. Pipes are not used as they are considered unreliable for large serial data transfers
between various hosts.

Using the routines described below (bnet_open, bnet_write, bnet_recv, and bnet_close)
guarantees that the number of bytes you write into the socket will be received as a single record
on the other end regardless of how many low level write() and read() calls are needed. All data
transferred are considered to be binary data.

bnet and Threads

These bnet routines work fine in a threaded environment. However, they assume that there is
only one reader or writer on the socket at any time. It is highly recommended that only a single
thread access any BSOCK packet. The exception to this rule is when the socket is first opened
and it is waiting for a job to start. The wait in the Storage daemon is done in one thread and then
passed to another thread for subsequent handling.

If you envision having two threads using the same BSOCK, think twice, then you must
implement some locking mechanism. However, it probably would not be appropriate to put locks
inside the bnet subroutines for efficiency reasons.

bnet_open

To establish a connection to a server, use the subroutine:

BSOCK *bnet_open(void *jcr, char *host, char *service, int port, int *fatal)

bnet_open(), if successful, returns the Bacula sock descriptor pointer to be used in subsequent
bnet_send() and bnet_read() requests. If not successful, bnet_open() returns a NULL. If fatal is
set on return, it means that a fatal error occurred and that you should not repeatedly call
bnet_open(). Any error message will generally be sent to the JCR.

bnet_send

To send a packet, one uses the subroutine:

int bnet_send(BSOCK *sock)

This routine is equivalent to a write() except that it handles the low level details. The data to be
sent is expected to be in sock−>msg and be sock−>msglen bytes. To send a packet, bnet_send()

TCP/IP Network Protocol 476

first writes four bytes in network byte order than indicate the size of the following data packet. It
returns:

 Returns 0 on failure
 Returns 1 on success

In the case of a failure, an error message will be sent to the JCR contained within the bsock
packet.

bnet_fsend

This form uses:

int bnet_fsend(BSOCK *sock, char *format, ...)

and it allows you to send a formatted messages somewhat like fprintf(). The return status is the
same as bnet_send.

Additional Error information

Fro additional error information, you can call is_bnet_error(BSOCK *bsock) which will return
0 if there is no error or non−zero if there is an error on the last transmission. The
is_bnet_stop(BSOCK *bsock) function will return 0 if there no errors and you can continue
sending. It will return non−zero if there are errors or the line is closed (no more transmissions
should be sent).

bnet_recv

To read a packet, one uses the subroutine:

int bnet_recv(BSOCK *sock)

This routine is similar to a read() except that it handles the low level details. bnet_read() first
reads packet length that follows as four bytes in network byte order. The data is read into
sock−>msg and is sock−>msglen bytes. If the sock−>msg is not large enough, bnet_recv()
realloc() the buffer. It will return an error (−2) if maxbytes is less than the record size sent. It
returns:

 * Returns number of bytes read
 * Returns 0 on end of file
 * Returns −1 on hard end of file (i.e. network connection close)
 * Returns −2 on error

It should be noted that bnet_recv() is a blocking read.

bnet_sig

To send a "signal" from one daemon to another, one uses the subroutine:

int bnet_sig(BSOCK *sock, SIGNAL)

Bacula Storage Management System

bnet_fsend 477

where SIGNAL is one of the following:

BNET_EOF − deprecated use BNET_EOD1.
BNET_EOD − End of data stream, new data may follow2.
BNET_EOD_POLL − End of data and poll all in one3.
BNET_STATUS − Request full status4.
BNET_TERMINATE − Conversation terminated, doing close()5.
BNET_POLL − Poll request, I'm hanging on a read6.
BNET_HEARTBEAT − Heartbeat Response requested7.
BNET_HB_RESPONSE − Only response permitted to HB8.
BNET_PROMPT − Prompt for UA9.

bnet_strerror

Returns a formated string corresponding to the last error that occurred.

bnet_close

The connection with the server remains open until closed by the subroutine:

void bnet_close(BSOCK *sock)

Becoming a Server

The bnet_open() and bnet_close() routines described above are used on the client side to
establish a connection and terminate a connection with the server. To become a server (i.e. wait
for a connection from a client), use the routine bnet_thread_server. The calling sequence is a
bit complicated, please refer to the code in bnet_server.c and the code at the beginning of each
daemon as examples of how to call it.

Higher Level Conventions

Within Bacula, we have established the convention that any time a single record is passed, it is
sent with bnet_send() and read with bnet_recv(). Thus the normal exchange between the server
(S) and the client (C) are:

S: wait for connection C: attempt connection
S: accept connection C: bnet_send() send request
S: bnet_recv() wait for request
S: act on request
S: bnet_send() send ack C: bnet_recv() wait for ack

Thus a single command is sent, acted upon by the server, and then acknowledged.

In certain cases, such as the transfer of the data for a file, all the information or data cannot be
sent in a single packet. In this case, the convention is that the client will send a command to the
server, who knows that more than one packet will be returned. In this case, the server will enter a
loop:

while ((n=bnet_recv(bsock)) > 0) {
 act on request

Bacula Storage Management System

bnet_strerror 478

}
if (n < 0)
 error

The client will perform the following:

bnet_send(bsock);
bnet_send(bsock);
...
bnet_sig(bsock, BNET_EOD);

Thus the client will send multiple packets and signal to the server when all the packets have been
sent by sending a zero length record.

Bacula Memory Management Index MD5 Algorithm

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula TCP/IP Network Protocol Index Smart Memory Allocation

Bacula Storage Management System

bnet_strerror 479

http://www.bacula.org/

Command Line Message Digest Utility

This page describes md5, a command line utility usable on either Unix or MS−DOS/Windows, which
generates and verifies message digests (digital signatures) using the MD5 algorithm. This program can be
useful when developing shell scripts or Perl programs for software installation, file comparison, and detection
of file corruption and tampering.

NAME

md5 − generate / check MD5 message digest

SYNOPSIS

md5 [−csignature] [−u] [−dinput_text | infile] [outfile]

DESCRIPTION

A message digest is a compact digital signature for an arbitrarily long stream of binary data. An ideal message
digest algorithm would never generate the same signature for two different sets of input, but achieving such
theoretical perfection would require a message digest as long as the input file. Practical message digest
algorithms compromise in favour of a digital signature of modest size created with an algorithm designed to
make preparation of input text with a given signature computationally infeasible. Message digest algorithms
have much in common with techniques used in encryption, but to a different end; verification that data have
not been altered since the signature was published.

Many older programs requiring digital signatures employed 16 or 32 bit cyclical redundancy codes (CRC)
originally developed to verify correct transmission in data communication protocols, but these short codes,
while adequate to detect the kind of transmission errors for which they were intended, are insufficiently secure
for applications such as electronic commerce and verification of security related software distributions.

The most commonly used present−day message digest algorithm is the 128 bit MD5 algorithm, developed by
Ron Rivest of the MIT Laboratory for Computer Science and RSA Data Security, Inc. The algorithm, with a
reference implementation, was published as Internet RFC 1321 in April 1992, and was placed into the public
domain at that time. Message digest algorithms such as MD5 are not deemed "encryption technology" and are
not subject to the export controls some governments impose on other data security products. (Obviously, the
responsibility for obeying the laws in the jurisdiction in which you reside is entirely your own, but many
common Web and Mail utilities use MD5, and I am unaware of any restrictions on their distribution and use.)

The MD5 algorithm has been implemented in numerous computer languages including C, Perl, and Java; if
you're writing a program in such a language, track down a suitable subroutine and incorporate it into your
program. The program described on this page is a command line implementation of MD5, intended for use in
shell scripts and Perl programs (it is much faster than computing an MD5 signature directly in Perl). This md5
program was originally developed as part of a suite of tools intended to monitor large collections of files (for

480

http://web.mit.edu/
http://www.lcs.mit.edu/
http://www.rsa.com/
http://www.fourmilab.ch/md5/rfc1321.html
http://www.perl.org/
http://www.javasoft.com/

example, the contents of a Web site) to detect corruption of files and inadvertent (or perhaps malicious)
changes. That task is now best accomplished with more comprehensive packages such as Tripwire, but the
command line md5 component continues to prove useful for verifying correct delivery and installation of
software packages, comparing the contents of two different systems, and checking for changes in specific
files.

OPTIONS

−csignature
Computes the signature of the specified infile or the string supplied by the −d option and compares it
against the specified signature. If the two signatures match, the exit status will be zero, otherwise the
exit status will be 1. No signature is written to outfile or standard output; only the exit status is set.
The signature to be checked must be specified as 32 hexadecimal digits.

−dinput_text
A signature is computed for the given input_text (which must be quoted if it contains white space
characters) instead of input from infile or standard input. If input is specified with the −d option, no
infile should be specified.

−u
Print how−to−call information.

FILES

If no infile or −d option is specified or infile is a single "−", md5 reads from standard input; if no outfile is
given, or outfile is a single "−", output is sent to standard output. Input and output are processed strictly
serially; consequently md5 may be used in pipelines.

BUGS

The mechanism used to set standard input to binary mode may be specific to Microsoft C; if you rebuild the
DOS/Windows version of the program from source using another compiler, be sure to verify binary files work
properly when read via redirection or a pipe.

This program has not been tested on a machine on which int and/or long are longer than 32 bits.

 Download md5.zip (Zipped archive)

The program is provided as md5.zip, a Zipped archive containing an ready−to−run Win32 command−line
executable program, md5.exe (compiled using Microsoft Visual C++ 5.0), and in source code form along
with a Makefile to build the program under Unix.

SEE ALSO

sum(1)

Bacula Storage Management System

OPTIONS 481

ftp://coast.cs.purdue.edu/pub/COAST/Tripwire/
http://www.fourmilab.ch/md5/md5.zip
http://www.fourmilab.ch/md5/md5.zip
http://www.fourmilab.ch/md5/md5.zip
http://www.pkware.com/

EXIT STATUS

md5 returns status 0 if processing was completed without errors, 1 if the −c option was specified and the
given signature does not match that of the input, and 2 if processing could not be performed at all due, for
example, to a nonexistent input file.

COPYING

This software is in the public domain. Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted, without
any conditions or restrictions. This software is provided "as is" without express or implied
warranty.

ACKNOWLEDGEMENTS

The MD5 algorithm was developed by Ron Rivest. The public domain C language implementation used in
this program was written by Colin Plumb in 1993.

by John Walker
January 6th, MIM

Bacula TCP/IP Network Protocol Index Smart Memory Allocation

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

MD5 Algorithm Index

Bacula Storage Management System

EXIT STATUS 482

http://www.fourmilab.ch/
http://www.bacula.org/

Smart Memory Allocation With Orphaned Buffer Detection

Few things are as embarrassing as a program that leaks, yet few errors are so easy to commit or
as difficult to track down in a large, complicated program as failure to release allocated memory.
SMARTALLOC replaces the standard C library memory allocation functions with versions
which keep track of buffer allocations and releases and report all orphaned buffers at the end of
program execution. By including this package in your program during development and testing,
you can identify code that loses buffers right when it's added and most easily fixed, rather than as
part of a crisis debugging push when the problem is identified much later in the testing cycle (or
even worse, when the code is in the hands of a customer). When program testing is complete,
simply recompiling with different flags removes SMARTALLOC from your program, permitting
it to run without speed or storage penalties.

In addition to detecting orphaned buffers, SMARTALLOC also helps to find other common
problems in management of dynamic storage including storing before the start or beyond the end
of an allocated buffer, referencing data through a pointer to a previously released buffer,
attempting to release a buffer twice or releasing storage not obtained from the allocator, and
assuming the initial contents of storage allocated by functions that do not guarantee a known
value. SMARTALLOC's checking does not usually add a large amount of overhead to a program
(except for programs which use realloc() extensively; see below). SMARTALLOC focuses
on proper storage management rather than internal consistency of the heap as checked by the
malloc_debug facility available on some systems. SMARTALLOC does not conflict with
malloc_debug and both may be used together, if you wish. SMARTALLOC makes no
assumptions regarding the internal structure of the heap and thus should be compatible with any
C language implementation of the standard memory allocation functions.

Installing SMARTALLOC

SMARTALLOC is provided as a Zipped archive, smartall.zip; see the download instructions
below.

To install SMARTALLOC in your program, simply add the statement:

#include "smartall.h"

to every C program file which calls any of the memory allocation functions (malloc, calloc,
free, etc.). SMARTALLOC must be used for all memory allocation with a program, so it's best
to add the #include of "smartall.h" to the omnibus include file for your entire program, if you
have such a thing. Next, define the symbol SMARTALLOC in the compilation before the
inclusion of smartall.h. I usually do this by having my Makefile add the "−DSMARTALLOC"
option to the C compiler for non−production builds. You can define the symbol manually, if you
prefer, by adding the statement:

#define SMARTALLOC

483

http://www.fourmilab.ch/smartall/smartall.zip

before the #include of "smartall.h".

At the point where your program is all done and ready to relinquish control to the operating
system, add the call:

 sm_dump(datadump);

where datadump specifies whether the contents of orphaned buffers are to be dumped in addition
printing to their size and place of allocation. The data are dumped only if datadump is nonzero,
so most programs will normally use "sm_dump(0);". If a mysterious orphaned buffer appears
that can't be identified from the information this prints about it, replace the statement with
"sm_dump(1);". Usually the dump of the buffer's data will furnish the additional clues you
need to excavate and extirpate the elusive error that left the buffer allocated.

Finally, add the files "smartall.h" and "smartall.c" from this release to your source directory,
make dependencies, and linker input. You needn't make inclusion of smartall.c in your link
optional; if compiled with SMARTALLOC not defined it generates no code, so you may always
include it knowing it will waste no storage in production builds. Now when you run your
program, if it leaves any buffers around when it's done, each will be reported by sm_dump() on
stderr as follows:

Orphaned buffer: 120 bytes allocated at line 50 of gutshot.c

Squelching a SMARTALLOC

Usually, when you first install SMARTALLOC in an existing program you'll find it nattering
about lots of orphaned buffers. Some of these turn out to be legitimate errors, but some are
storage allocated during program initialisation that, while dynamically allocated, is logically
static storage not intended to be released. Of course, you can get rid of the complaints about
these buffers by adding code to release them, but by doing so you're adding unnecessary
complexity and code size to your program just to silence the nattering of a SMARTALLOC, so
an escape hatch is provided to eliminate the need to release these buffers.

Normally all storage allocated with the functions malloc(), calloc(), and realloc() is
monitored by SMARTALLOC. If you make the function call:

 sm_static(1);

you declare that subsequent storage allocated by malloc(), calloc(), and realloc()
should not be considered orphaned if found to be allocated when sm_dump() is called. I use a
call on "sm_static(1);" before I allocate things like program configuration tables so I don't
have to add code to release them at end of program time. After allocating unmonitored data this
way, be sure to add a call to:

 sm_static(0);

to resume normal monitoring of buffer allocations. Buffers allocated while sm_static(1) is in
effect are not checked for having been orphaned but all the other safeguards provided by
SMARTALLOC remain in effect. You may release such buffers, if you like; but you don't have
to.

Bacula Storage Management System

 Squelching a SMARTALLOC 484

Living with Libraries

Some library functions for which source code is unavailable may gratuitously allocate and return
buffers that contain their results, or require you to pass them buffers which they subsequently
release. If you have source code for the library, by far the best approach is to simply install
SMARTALLOC in it, particularly since this kind of ill−structured dynamic storage management
is the source of so many storage leaks. Without source code, however, there's no option but to
provide a way to bypass SMARTALLOC for the buffers the library allocates and/or releases with
the standard system functions.

For each function xxx redefined by SMARTALLOC, a corresponding routine named
"actuallyxxx" is furnished which provides direct access to the underlying system function, as
follows:

Standard function Direct access function

malloc(size) actuallymalloc(size)

calloc(nelem, elsize) actuallycalloc(nelem, elsize)

realloc(ptr, size) actuallyrealloc(ptr, size)

free(ptr) actuallyfree(ptr)

For example, suppose there exists a system library function named "getimage()" which reads
a raster image file and returns the address of a buffer containing it. Since the library routine
allocates the image directly with malloc(), you can't use SMARTALLOC's free(), as that
call expects information placed in the buffer by SMARTALLOC's special version of
malloc(), and hence would report an error. To release the buffer you should call
actuallyfree(), as in this code fragment:

 struct image *ibuf = getimage("ratpack.img");
 display_on_screen(ibuf);
 actuallyfree(ibuf);

Conversely, suppose we are to call a library function, "putimage()", which writes an image
buffer into a file and then releases the buffer with free(). Since the system free() is being
called, we can't pass a buffer allocated by SMARTALLOC's allocation routines, as it contains
special information that the system free() doesn't expect to be there. The following code uses
actuallymalloc() to obtain the buffer passed to such a routine.

 struct image *obuf =
 (struct image *) actuallymalloc(sizeof(struct image));
 dump_screen_to_image(obuf);
 putimage("scrdump.img", obuf); /* putimage() releases obuf */

It's unlikely you'll need any of the "actually" calls except under very odd circumstances (in four
products and three years, I've only needed them once), but they're there for the rare occasions
that demand them. Don't use them to subvert the error checking of SMARTALLOC; if you want
to disable orphaned buffer detection, use the sm_static(1) mechanism described above. That
way you don't forfeit all the other advantages of SMARTALLOC as you do when using
actuallymalloc() and actuallyfree().

Bacula Storage Management System

 Living with Libraries 485

SMARTALLOC Details

When you include "smartall.h" and define SMARTALLOC, the following standard system
library functions are redefined with the #define mechanism to call corresponding functions
within smartall.c instead. (For details of the redefinitions, please refer to smartall.h.)

 void *malloc(size_t size)
 void *calloc(size_t nelem, size_t elsize)
 void *realloc(void *ptr, size_t size)
 void free(void *ptr)
 void cfree(void *ptr)

cfree() is a historical artifact identical to free().

In addition to allocating storage in the same way as the standard library functions, the
SMARTALLOC versions expand the buffers they allocate to include information that identifies
where each buffer was allocated and to chain all allocated buffers together. When a buffer is
released, it is removed from the allocated buffer chain. A call on sm_dump() is able, by
scanning the chain of allocated buffers, to find all orphaned buffers. Buffers allocated while
sm_static(1) is in effect are specially flagged so that, despite appearing on the allocated
buffer chain, sm_dump() will not deem them orphans.

When a buffer is allocated by malloc() or expanded with realloc(), all bytes of newly
allocated storage are set to the hexadecimal value 0x55 (alternating one and zero bits). Note that
for realloc() this applies only to the bytes added at the end of buffer; the original contents of
the buffer are not modified. Initializing allocated storage to a distinctive nonzero pattern is
intended to catch code that erroneously assumes newly allocated buffers are cleared to zero; in
fact their contents are random. The calloc() function, defined as returning a buffer cleared to
zero, continues to zero its buffers under SMARTALLOC.

Buffers obtained with the SMARTALLOC functions contain a special sentinel byte at the end of
the user data area. This byte is set to a special key value based upon the buffer's memory address.
When the buffer is released, the key is tested and if it has been overwritten an assertion in the
free function will fail. This catches incorrect program code that stores beyond the storage
allocated for the buffer. At free() time the queue links are also validated and an assertion
failure will occur if the program has destroyed them by storing before the start of the allocated
storage.

In addition, when a buffer is released with free(), its contents are immediately destroyed by
overwriting them with the hexadecimal pattern 0xAA (alternating bits, the one's complement of
the initial value pattern). This will usually trip up code that keeps a pointer to a buffer that's been
freed and later attempts to reference data within the released buffer. Incredibly, this is legal in the
standard Unix memory allocation package, which permits programs to free() buffers, then raise
them from the grave with realloc(). Such program "logic" should be fixed, not
accommodated, and SMARTALLOC brooks no such Lazarus buffer" nonsense.

Some C libraries allow a zero size argument in calls to malloc(). Since this is far more likely
to indicate a program error than a defensible programming stratagem, SMARTALLOC disallows
it with an assertion.

When the standard library realloc() function is called to expand a buffer, it attempts to

Bacula Storage Management System

 SMARTALLOC Details 486

expand the buffer in place if possible, moving it only if necessary. Because SMARTALLOC
must place its own private storage in the buffer and also to aid in error detection, its version of
realloc() always moves and copies the buffer except in the trivial case where the size of the
buffer is not being changed. By forcing the buffer to move on every call and destroying the
contents of the old buffer when it is released, SMARTALLOC traps programs which keep
pointers into a buffer across a call on realloc() which may move it. This strategy may prove
very costly to programs which make extensive use of realloc(). If this proves to be a
problem, such programs may wish to use actuallymalloc(), actuallyrealloc(), and
actuallyfree() for such frequently−adjusted buffers, trading error detection for
performance. Although not specified in the System V Interface Definition, many C library
implementations of realloc() permit an old buffer argument of NULL, causing realloc()
to allocate a new buffer. The SMARTALLOC version permits this.

When SMARTALLOC is Disabled

When SMARTALLOC is disabled by compiling a program with the symbol SMARTALLOC not
defined, calls on the functions otherwise redefined by SMARTALLOC go directly to the system
functions. In addition, compile−time definitions translate calls on the "actually...()"
functions into the corresponding library calls; "actuallymalloc(100)", for example,
compiles into "malloc(100)". The two special SMARTALLOC functions, sm_dump() and
sm_static(), are defined to generate no code (hence the null statement). Finally, if
SMARTALLOC is not defined, compilation of the file smartall.c generates no code or data at all,
effectively removing it from the program even if named in the link instructions.

Thus, except for unusual circumstances, a program that works with SMARTALLOC defined for
testing should require no changes when built without it for production release.

The alloc() Function

Many programs I've worked on use very few direct calls to malloc(), using the identically
declared alloc() function instead. Alloc detects out−of−memory conditions and aborts,
removing the need for error checking on every call of malloc() (and the temptation to skip
checking for out−of−memory).

As a convenience, SMARTALLOC supplies a compatible version of alloc() in the file
alloc.c, with its definition in the file alloc.h. This version of alloc() is sensitive to the
definition of SMARTALLOC and cooperates with SMARTALLOC's orphaned buffer detection.
In addition, when SMARTALLOC is defined and alloc() detects an out of memory condition,
it takes advantage of the SMARTALLOC diagnostic information to identify the file and line
number of the call on alloc() that failed.

Overlays and Underhandedness

String constants in the C language are considered to be static arrays of characters accessed
through a pointer constant. The arrays are potentially writable even though their pointer is a
constant. SMARTALLOC uses the compile−time definition ./smartall.wml to obtain the
name of the file in which a call on buffer allocation was performed. Rather than reserve space in
a buffer to save this information, SMARTALLOC simply stores the pointer to the compiled−in
text of the file name. This works fine as long as the program does not overlay its data among
modules. If data are overlayed, the area of memory which contained the file name at the time it

Bacula Storage Management System

 When SMARTALLOC is Disabled 487

was saved in the buffer may contain something else entirely when sm_dump() gets around to
using the pointer to edit the file name which allocated the buffer.

If you want to use SMARTALLOC in a program with overlayed data, you'll have to modify
smartall.c to either copy the file name to a fixed−length field added to the abufhead structure,
or else allocate storage with malloc(), copy the file name there, and set the abfname pointer
to that buffer, then remember to release the buffer in sm_free. Either of these approaches are
wasteful of storage and time, and should be considered only if there is no alternative. Since most
initial debugging is done in non−overlayed environments, the restrictions on SMARTALLOC
with data overlaying may never prove a problem. Note that conventional overlaying of code, by
far the most common form of overlaying, poses no problems for SMARTALLOC; you need only
be concerned if you're using exotic tools for data overlaying on MS−DOS or other
address−space−challenged systems.

Since a C language "constant" string can actually be written into, most C compilers generate a
unique copy of each string used in a module, even if the same constant string appears many
times. In modules that contain many calls on allocation functions, this results in substantial
wasted storage for the strings that identify the file name. If your compiler permits optimization of
multiple occurrences of constant strings, enabling this mode will eliminate the overhead for these
strings. Of course, it's up to you to make sure choosing this compiler mode won't wreak havoc on
some other part of your program.

Test and Demonstration Program

A test and demonstration program, smtest.c, is supplied with SMARTALLOC. You can build
this program with the Makefile included. Please refer to the comments in smtest.c and the
Makefile for information on this program. If you're attempting to use SMARTALLOC on a new
machine or with a new compiler or operating system, it's a wise first step to check it out with
smtest first.

Invitation to the Hack

SMARTALLOC is not intended to be a panacea for storage management problems, nor is it
universally applicable or effective; it's another weapon in the arsenal of the defensive
professional programmer attempting to create reliable products. It represents the current state of
evolution of expedient debug code which has been used in several commercial software products
which have, collectively, sold more than third of a million copies in the retail market, and can be
expected to continue to develop through time as it is applied to ever more demanding projects.

The version of SMARTALLOC here has been tested on a Sun SPARCStation, Silicon Graphics
Indigo², and on MS−DOS using both Borland and Microsoft C. Moving from compiler to
compiler requires the usual small changes to resolve disputes about prototyping of functions,
whether the type returned by buffer allocation is char * or void *, and so forth, but
following those changes it works in a variety of environments. I hope you'll find
SMARTALLOC as useful for your projects as I've found it in mine.

 Download smartall.zip (Zipped archive)

Bacula Storage Management System

 Test and Demonstration Program 488

http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip

SMARTALLOC is provided as smartall.zip, a Zipped archive containing source code,
documentation, and a Makefile to build the software under Unix.

Copying

SMARTALLOC is in the public domain. Permission to use, copy, modify, and
distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided
"as is" without express or implied warranty.

by John Walker
October 30th, 1998

MD5 Algorithm Index

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bugs Index Storage Daemon Design

Bacula Storage Management System

 Copying 489

http://www.fourmilab.ch/smartall/smartall.zip
http://www.pkware.com/
http://www.fourmilab.ch
http://www.bacula.org/

Director Services Daemon

General

This chapter is intended to be a technical discussion of the Director services and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula Director services consist of the program that supervises all the backup and restore
operations.

To be written ...

Bugs Index Storage Daemon Design

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula Director Services Index Bacula File Services

Director Services Daemon 490

http://www.bacula.org/

Storage Daemon Design

General

This chapter is intended to be a technical discussion of the Storage daemon services and as such
is not targeted at end users but rather at developers and system administrators that want or need
to know more of the working details of Bacula.

Introduction

The Bacula Storage daemon provides storage resources to a Bacula installation. An individual
Storage daemon is associated with a physical permanent storage device (for example, a tape
drive, CD writer, tape changer or jukebox, etc.), and may employ auxiliary storage resources
(such as space on a hard disk file system) to increase performance and/or optimize use of the
permanent storage medium.

Any number of storage daemons may be run on a given machine; each associated with an
individual storage device connected to it, and BACULA operations may employ storage
daemons on any number of hosts connected by a network, local or remote. The ability to employ
remote storage daemons (with appropriate security measures) permits automatic off−site backup,
possibly to publicly available backup repositories.

Development Outline

In order to provide a high performance backup and restore solution that scales to very large
capacity devices and networks, the storage daemon must be able to extract as much performance
from the storage device and network with which it interacts. In order to accomplish this, storage
daemons will eventually have to sacrifice simplicity and painless portability in favor of
techniques which improve performance. My goal in designing the storage daemon protocol and
developing the initial prototype storage daemon is to provide for these additions in the future,
while implementing an initial storage daemon which is very simple and portable to almost any
POSIX−like environment. This original storage daemon (and its evolved descendants) can serve
as a portable solution for non−demanding backup requirements (such as single servers of modest
size, individual machines, or small local networks), while serving as the starting point for
development of higher performance configurable derivatives which use techniques such as
POSIX threads, shared memory, asynchronous I/O, buffering to high−speed intermediate media,
and support for tape changers and jukeboxes.

Connections and Sessions

A client connects to a storage server by initiating a conventional TCP connection. The storage
server accepts the connection unless its maximum number of connections has been reached or the
specified host is not granted access to the storage server. Once a connection has been opened, the
client may make any number of Query requests, and/or initiate (if permitted), one or more
Append sessions (which transmit data to be stored by the storage daemon) and/or Read sessions
(which retrieve data from the storage daemon).

Most requests and replies sent across the connection are simple ASCII strings, with status replies

Storage Daemon Design 491

prefixed by a four digit status code for easier parsing. Binary data appear in blocks stored and
retrieved from the storage. Any request may result in a single−line status reply of
"3201 Notification pending", which indicates the client must send a "Query
notification" request to retrieve one or more notifications posted to it. Once the notifications have
been returned, the client may then resubmit the request which resulted in the 3201 status.

The following descriptions omit common error codes, yet to be defined, which can occur from
most or many requests due to events like media errors, restarting of the storage daemon, etc.
These details will be filled in, along with a comprehensive list of status codes along with which
requests can produce them in an update to this document.

Append Requests

append open session = <JobId> [<Password>]
A data append session is opened with the Job ID given by JobId with client password (if
required) given by Password. If the session is successfully opened, a status of 3000 OK
is returned with a "ticket = number" reply used to identify subsequent messages in
the session. If too many sessions are open, or a conflicting session (for example, a read
in progress when simultaneous read and append sessions are not permitted), a status of
"3502 Volume busy" is returned. If no volume is mounted, or the volume mounted
cannot be appended to, a status of "3503 Volume not mounted" is returned.

append data = <ticket−number>
If the append data is accepted, a status of 3000 OK data address =
<IPaddress> port = <port> is returned, where the IPaddress and port
specify the IP address and port number of the data channel. Error status codes are
3504 Invalid ticket number and 3505 Session aborted, the latter of
which indicates the entire append session has failed due to a daemon or media error.
Once the File daemon has established the connection to the data channel opened by the
Storage daemon, it will transfer a header packet followed by any number of data packets.
The header packet is of the form:

<file−index> <stream−id> <info>

The details are specified in the Daemon Protocol section of this document.

*append abort session = <ticket−number>
The open append session with ticket ticket−number is aborted; any blocks not yet written
to permanent media are discarded. Subsequent attempts to append data to the session will
receive an error status of 3505 Session aborted.

append end session = <ticket−number>
The open append session with ticket ticket−number is marked complete; no further
blocks may be appended. The storage daemon will give priority to saving any buffered
blocks from this session to permanent media as soon as possible.

append close session = <ticket−number>
The append session with ticket ticket is closed. This message does not receive an
3000 OK reply until all of the content of the session are stored on permanent media, at
which time said reply is given, followed by a list of volumes, from first to last, which
contain blocks from the session, along with the first and last file and block on each

Bacula Storage Management System

Append Requests 492

containing session data and the volume session key identifying data from that session in
lines with the following format:
Volume = <Volume−id> <start−file> <start−block> <end−file>
<end−block> <volume−session−id>where Volume−id is the volume label,
start−file and start−block are the file and block containing the first data from that
session on the volume, end−file and end−block are the file and block with the last data
from the session on the volume and volume−session−id is the volume session ID for
blocks from the session stored on that volume.

Read Requests

Read open session = <JobId> <Volume−id> <start−file> <start−block> <end−file>
<end−block> <volume−session−id> <password>

where Volume−id is the volume label, start−file and start−block are the file and block
containing the first data from that session on the volume, end−file and end−block are the
file and block with the last data from the session on the volume and volume−session−id
is the volume session ID for blocks from the session stored on that volume.
If the session is successfully opened, a status of

3100 OK Ticket = number"

is returned with a reply used to identify subsequent messages in the session. If too many
sessions are open, or a conflicting session (for example, an append in progress when
simultaneous read and append sessions are not permitted), a status of
"3502 Volume busy" is returned. If no volume is mounted, or the volume mounted
cannot be appended to, a status of "3503 Volume not mounted" is returned. If no
block with the given volume session ID and the correct client ID number appears in the
given first file and block for the volume, a status of "3505 Session not found" is
returned.

Read data = <Ticket> > <Block>
The specified Block of data from open read session with the specified Ticket number is
returned, with a status of 3000 OK followed by a "Length = size" line giving the
length in bytes of the block data which immediately follows. Blocks must be retrieved in
ascending order, but blocks may be skipped. If a block number greater than the largest
stored on the volume is requested, a status of "3201 End of volume" is returned. If
a block number greater than the largest in the file is requested, a status of
"3401 End of file" is returned.

Read close session = <Ticket>
The read session with Ticket number is closed. A read session may be closed at any
time; you needn't read all its blocks before closing it.

by John Walker
January 30th, MM

Bacula Storage Management System

Read Requests 493

http://www.fourmilab.ch/

Bacula Director Services Index Bacula File Services

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Storage Daemon Design Index Bacula Catalog Services

Bacula Storage Management System

Read Requests 494

http://www.bacula.org/

File Services Daemon

General

Please note, this section is somewhat out of date as the code has evolved significantly. The basic
idea has not changed though.

This chapter is intended to be a technical discussion of the File daemon services and as such is
not targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula File Services consist of the programs that run on the system to be backed up and
provide the interface between the Host File system and Bacula −− in particular, the Director and
the Storage services.

When time comes for a backup, the Director gets in touch with the File daemon on the client
machine and hands it a set of "marching orders" which, if written in English, might be something
like the following:

OK, File daemon, it's time for your daily incremental backup. I want you to get in touch with the
Storage daemon on host archive.mysite.com and perform the following save operations with the
designated options. You'll note that I've attached include and exclude lists and patterns you
should apply when backing up the file system. As this is an incremental backup, you should save
only files modified since the time you started your last backup which, as you may recall, was
2000−11−19−06:43:38. Please let me know when you're done and how it went. Thank you.

So, having been handed everything it needs to decide what to dump and where to store it, the File
daemon doesn't need to have any further contact with the Director until the backup is complete
providing there are no errors. If there are errors, the error messages will be delivered
immediately to the Director. While the backup is proceeding, the File daemon will send the file
coordinates and data for each file being backed up to the Storage daemon, which will in turn pass
the file coordinates to the Director to put in the catalog.

During a Verify of the catalog, the situation is different, since the File daemon will have an
exchange with the Director for each file, and will not contact the Storage daemon.

A Restore operation will be very similar to the Backup except that during the Restore the
Storage daemon will not send storage coordinates to the Director since the Director presumably
already has them. On the other hand, any error messages from either the Storage daemon or File
daemon will normally be sent directly to the Directory (this, of course, depends on how the
Message resource is defined).

Commands Received from the Director for a Backup

To be written ...

Commands Received from the Director for a Restore

To be written ...

File Services Daemon 495

Storage Daemon Design Index Bacula Catalog Services

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Developer's Guide

Bacula File Services Index

Bacula Storage Management System

File Services Daemon 496

http://www.bacula.org/

Catalog Services

General

This chapter is intended to be a technical discussion of the Catalog services and as such is not
targeted at end users but rather at developers and system administrators that want or need to
know more of the working details of Bacula.

The Bacula Catalog services consist of the programs that provide the SQL database engine for
storage and retrieval of all information concerning files that were backed up and their locations
on the storage media.

We have investigated the possibility of using the following SQL engines for Bacula: Beagle,
mSQL, GNU SQL, PostgreSQL, SQLite, Oracle, and MySQL. Each presents certain problems
with either licensing or maturity. At present, we have chosen for development purposes to use
MySQL, PostgreSQL and SQLite. MySQL was chosen because it is fast, proven to be reliable,
widely used, and actively being developed. MySQL is released under the GNU GPL license.
PostgreSQL was chosen because it is a full−featured, very mature database, and because Dan
Langille did the Bacula driver for it. PostgreSQL is distributed under the BSD license. SQLite
was chosen because it is small, efficient, and can be directly embedded in Bacula thus requiring
much less effort from the system administrator or person building Bacula. In our testing SQLite
has performed very well, and for the functions that we use, it has never encountered any errors
except that it does not appear to handle databases larger than 2GBytes.

The Bacula SQL code has been written in a manner that will allow it to be easily modified to
support any of the current SQL database systems on the market (for example: mSQL, iODBC,
unixODBC, Solid, OpenLink ODBC, EasySoft ODBC, InterBase, Oracle8, Oracle7, and DB2).

If you do not specify either −−with−mysql or −−with−postgresql or −−with−sqlite on the
./configure line, Bacula will use its minimalist internal database. This database is kept for build
reasons but is no longer supported. Bacula requires one of the three databases (MySQL,
PostgreSQL, or SQLite) to run.

Filenames and Maximum Filename Length

In general, either MySQL, PostgreSQL or SQLite permit storing arbitrary long path names and
file names in the catalog database. In practice, there still may be one or two places in the Catalog
interface code that restrict the maximum path length to 512 characters and the maximum file
name length to 512 characters. These restrictions are believed to have been removed. Please note,
these restrictions apply only to the Catalog database and thus to your ability to list online the files
saved during any job. All information received and stored by the Storage daemon (normally on
tape) allows and handles arbitrarily long path and filenames.

Installing and Configuring MySQL

For the details of installing and configuring MySQL, please see the Installing and Configuring
MySQL chapter of this manual.

Catalog Services 497

Installing and Configuring PostgreSQL

For the details of installing and configuring PostgreSQL, please see the Installing and
Configuring PostgreSQL chapter of this manual.

Installing and Configuring SQLite

For the details of installing and configuring SQLite, please see the Installing and Configuring
SQLite chapter of this manual.

Internal Bacula Catalog

Please see the Internal Bacula Database chapter of this manual for more details.

Database Table Design

All discussions that follow pertain to the MySQL database. The details for the PostgreSQL and
SQLite databases are essentially identical except for that all fields in the SQLite database are
stored as ASCII text and some of the database creation statements are a bit different. The details
of the internal Bacula catalog are not discussed here.

Because the Catalog database may contain very large amounts of data for large sites, we have
made a modest attempt to normalize the data tables to reduce redundant information. While
reducing the size of the database significantly, it does, unfortunately, add some complications to
the structures.

In simple terms, the Catalog database must contain a record of all Jobs run by Bacula, and for
each Job, it must maintain a list of all files saved, with their File Attributes (permissions, create
date, ...), and the location and Media on which the file is stored. This is seemingly a simple task,
but it represents a huge amount interlinked data. Note: the list of files and their attributes is not
maintained when using the internal Bacula database. The data stored in the File records, which
allows the user or administrator to obtain a list of all files backed up during a job, is by far the
largest volume of information put into the Catalog database.

Although the Catalog database has been designed to handle backup data for multiple clients,
some users may want to maintain multiple databases, one for each machine to be backed up. This
reduces the risk of confusion of accidental restoring a file to the wrong machine as well as
reducing the amount of data in a single database, thus increasing efficiency and reducing the
impact of a lost or damaged database.

Sequence of Creation of Records for a Save Job

Start with StartDate, ClientName, Filename, Path, Attributes, MediaName, MediaCoordinates.
(PartNumber, NumParts). In the steps below, "Create new" means to create a new record whether
or not it is unique. "Create unique" means each record in the database should be unique. Thus,
one must first search to see if the record exists, and only if not should a new one be created,
otherwise the existing RecordId should be used.

Create new Job record with StartDate; save JobId1.

Bacula Storage Management System

Installing and Configuring PostgreSQL 498

Create unique Media record; save MediaId2.
Create unique Client record; save ClientId3.
Create unique Filename record; save FilenameId4.
Create unique Path record; save PathId5.
Create unique Attribute record; save AttributeId
store ClientId, FilenameId, PathId, and Attributes

6.

Create new File record
store JobId, AttributeId, MediaCoordinates, etc

7.

Repeat steps 4 through 8 for each file8.
Create a JobMedia record; save MediaId9.
Update Job record filling in EndDate and other Job statistics10.

Database Tables

Filename

Column Name Data Type Remark

FilenameId integer Primary Key

Name Blob Filename

The Filename table shown above contains the name of each file backed up with the path
removed. If different directories or machines contain the same filename, only one copy will be
saved in this table.

Path

Column Name Data Type Remark

PathId integer Primary Key

Path Blob Full Path

The Path table contains shown above the path or directory names of all directories on the system
or systems. The filename and any MSDOS disk name are stripped off. As with the filename, only
one copy of each directory name is kept regardless of how many machines or drives have the
same directory. These path names should be stored in Unix path name format.

Some simple testing on a Linux file system indicates that separating the filename and the path
may be more complication than is warranted by the space savings. For example, this system has a
total of 89,097 files, 60,467 of which have unique filenames, and there are 4,374 unique paths.

Finding all those files and doing two stats() per file takes an average wall clock time of 1 min 35
seconds on a 400MHz machine running RedHat 6.1 Linux.

Finding all those files and putting them directly into a MySQL database with the path and
filename defined as TEXT, which is variable length up to 65,535 characters takes 19 mins 31
seconds and creates a 27.6 MByte database.

Bacula Storage Management System

Database Tables 499

Doing the same thing, but inserting them into Blob fields with the filename indexed on the first
30 characters and the path name indexed on the 255 (max) characters takes 5 mins 18 seconds
and creates a 5.24 MB database. Rerunning the job (with the database already created) takes
about 2 mins 50 seconds.

Running the same as the last one (Path and Filename Blob), but Filename indexed on the first 30
characters and the Path on the first 50 characters (linear search done there after) takes 5 mins on
the average and creates a 3.4 MB database. Rerunning with the data already in the DB takes 3
mins 35 seconds.

Finally, saving only the full path name rather than splitting the path and the file, and indexing it
on the first 50 characters takes 6 mins 43 seconds and creates a 7.35 MB database.

File

Column Name Data Type Remark

FileId integer Primary Key

FileIndex integer The sequential file number in the Job

JobId integer Link to Job Record

PathId integer Link to Path Record

FilenameId integer Link to Filename Record

MarkId integer Used to mark files during Verify Jobs

LStat tinyblob File attributes in base64 encoding

MD5 tinyblob MD5 signature in base64 encoding

The File table shown above contains one entry for each file backed up by Bacula. Thus a file that
is backed up multiple times (as is normal) will have multiple entries in the File table. This will
probably be the table with the most number of records. Consequently, it is essential to keep the
size of this record to an absolute minimum. At the same time, this table must contain all the
information (or pointers to the information) about the file and where it is backed up. Since a file
may be backed up many times without having changed, the path and filename are stored in
separate tables.

This table contains by far the largest amount of information in the Catalog database, both from
the stand point of number of records, and the stand point of total database size. As a
consequence, the user must take care to periodically reduce the number of File records using the
retention command in the Console program.

Job

Bacula Storage Management System

Database Tables 500

Column Name Data Type Remark

JobId integer Primary Key

Job tinyblob Unique Job Name

Name tinyblob Job Name

PurgedFiles tinyint Used by Bacula for purging/retention periods

Type binary(1) Job Type: Backup, Copy, Clone, Archive, Migration

Level binary(1) Job Level

ClientId integer Client index

JobStatus binary(1) Job Termination Status

SchedTime datetime Time/date when Job scheduled

StartTime datetime Time/date when Job started

EndTime datetime Time/date when Job ended

JobTDate bigint Start day in Unix format but 64 bits; used for Retention period.

VolSessionId integer Unique Volume Session ID

VolSessionTime integer Unique Volume Session Time

JobFiles integer Number of files saved in Job

JobBytes bigint Number of bytes saved in Job

JobErrors integer Number of errors during Job

JobMissingFiles integer Number of files not saved (not yet used)

PoolId integer Link to Pool Record

FileSetId integer Link to FileSet Record

PurgedFiles tiny integer Set when all File records purged

HasBase tiny integer Set when Base Job run

The Job table contains one record for each Job run by Bacula. Thus normally, there will be one
per day per machine added to the database. Note, the JobId is used to index Job records in the
database, and it often is shown to the user in the Console program. However, care must be taken
with its use as it is not unique from database to database. For example, the user may have a
database for Client data saved on machine Rufus and another database for Client data saved on
machine Roxie. In this case, the two database will each have JobIds that match those in another

Bacula Storage Management System

Database Tables 501

database. For a unique reference to a Job, see Job below.

The Name field of the Job record corresponds to the Name resource record given in the Director's
configuration file. Thus it is a generic name, and it will be normal to find many Jobs (or even all
Jobs) with the same Name.

The Job field contains a combination of the Name and the schedule time of the Job by the
Director. Thus for a given Director, even with multiple Catalog databases, the Job will contain a
unique name that represents the Job.

For a given Storage daemon, the VolSessionId and VolSessionTime form a unique identification
of the Job. This will be the case even if multiple Directors are using the same Storage daemon.

The Job Type (or simply Type) can have one of the following values:

Value Meaning

B Backup Job

V Verify Job

R Restore Job

C Console program (not in database)

D Admin Job

A Archive Job (not implemented)

The JobStatus field specifies how the job terminated, and can be one of the following:

Value Meaning

C Created but not yet running

R Running

B Blocked

T Terminated normally

E Terminated in Error

e Non−fatal error

f Fatal error

D Verify Differences

A Canceled by the user

Bacula Storage Management System

Database Tables 502

F Waiting on the File daemon

S Waiting on the Storage daemon

m Waiting for a new Volume to be mounted

M Waiting for a Mount

s Waiting for Storage resource

j Waiting for Job resource

c Waiting for Client resource

d Wating for Maximum jobs

t Waiting for Start Time

p Waiting for higher priority job to finish

FileSet

Column Name Data Type Remark

FileSetId integer Primary Key

FileSet tinyblob FileSet name

MD5 tinyblob MD5 checksum of FileSet

CreateTime datetime Time and date Fileset created

The FileSet table contains one entry for each FileSet that is used. The MD5 signature is kept to
ensure that if the user changes anything inside the FileSet, it will be detected and the new FileSet
will be used. This is particularly important when doing an incremental update. If the user deletes
a file or adds a file, we need to ensure that a Full backup is done prior to the next incremental.

JobMedia

Column Name Data Type Remark

JobMediaId integer Primary Key

JobId integer Link to Job Record

MediaId integer Link to Media Record

FirstIndex integer

Bacula Storage Management System

Database Tables 503

The index (sequence number) of the first file written for
this Job to the Media

LastIndex integer The index of the last file written for this Job to the Media

StartFile integer
The physical media (tape) file number of the first block
written for this Job

EndFile integer
The physical media (tape) file number of the last block
written for this Job

StartBlock integer The number of the first block written for this Job

EndBlock integer The number of the last block written for this Job

VolIndex integer The Volume use sequence number within the Job

The JobMedia table contains one entry for each volume written for the current Job. If the Job
spans 3 tapes, there will be three JobMedia records, each containing the information to find all
the files for the given JobId on the tape.

Media

Column Name Data Type Remark

MediaId integer Primary Key

VolumeName tinyblob Volume name

Slot integer Autochanger Slot number or zero

PoolId integer Link to Pool Record

MediaType tinyblob The MediaType supplied by the user

FirstWritten datetime Time/date when first written

LastWritten datetime Time/date when last written

LabelDate datetime Time/date when tape labeled

VolJobs integer Number of jobs written to this media

VolFiles integer Number of files written to this media

VolBlocks integer Number of blocks written to this media

VolMounts integer Number of time media mounted

VolBytes bigint Number of bytes saved in Job

Bacula Storage Management System

Database Tables 504

VolErrors integer Number of errors during Job

VolWrites integer Number of writes to media

MaxVolBytes bigint Maximum bytes to put on this media

VolCapacityBytes bigint Capacity estimate for this volume

VolStatus enum
Status of media: Full, Archive, Append, Recycle,
Read−Only, Disabled, Error, Busy

Recycle tinyint Whether or not Bacula can recycle the Volumes: Yes, No

VolRetention bigint 64 bit seconds until expiration

VolUseDuration bigint 64 bit seconds volume can be used

MaxVolJobs integer maximum jobs to put on Volume

MaxVolFiles integer maximume EOF marks to put on Volume

The Volume table (internally referred to as the Media table) contains one entry for each volume,
that is each tape, cassette (8mm, DLT, DAT, ...), or file on which information is or was backed
up. There is one Volume record created for each of the NumVols specified in the Pool resource
record.

Pool

Column Name Data Type Remark

PoolId integer Primary Key

Name Tinyblob Pool Name

NumVols Integer Number of Volumes in the Pool

MaxVols Integer Maximum Volumes in the Pool

UseOnce tinyint Use volume once

UseCatalog tinyint Set to use catalog

AcceptAnyVolume tinyint Accept any volume from Pool

VolRetention bigint 64 bit seconds to retain volume

VolUseDuration bigint 64 bit seconds volume can be used

MaxVolJobs integer max jobs on volume

Bacula Storage Management System

Database Tables 505

MaxVolFiles integer max EOF marks to put on Volume

MaxVolBytes bigint max bytes to write on Volume

AutoPrune tinyint Yes/no for autopruning

Recycle tinyint Yes/no for allowing auto recycling of Volume

PoolType enum Backup, Copy, Cloned, Archive, Migration

LabelFormat Tinyblob Label format

The Pool table contains one entry for each media pool controlled by Bacula in this database. One
media record exists for each of the NumVols contained in the Pool. The PoolType is a Bacula
defined keyword. The MediaType is defined by the administrator, and corresponds to the
MediaType specified in the Director's Storage definition record. The CurrentVol is the sequence
number of the Media record for the current volume.

Client

Column Name Data Type Remark

ClientId integer Primary Key

Name TinyBlob File Services Name

UName TinyBlob uname −a from Client (not yet used)

AutoPrune tinyint Yes/no for autopruning

FileRetention bigint 64 bit seconds to retain Files

JobRetention bigint 64 bit seconds to retain Job

The Client table contains one entry for each machine backed up by Bacula in this database.
Normally the Name is a fully qualified domain name.

UnsavedFiles

Column Name Data Type Remark

UnsavedId integer Primary Key

JobId integer JobId corresponding to this record

PathId integer Id of path

FilenameId integer Id of filename

Bacula Storage Management System

Database Tables 506

The UnsavedFiles table contains one entry for each file that was not saved. Note! This record is
not yet implemented.

Counter

Column Name Data Type Remark

Counter tinyblob Counter name

MinValue integer Start/Min value for counter

MaxValue integer Max value for counter

CurrentValue integer Current counter value

WrapCounter tinyblob Name of another counter

The Counter table contains one entry for each permanent counter defined by the user.

Version

Column Name Data Type Remark

VersionId integer Primary Key

The Version table defines the Bacula database version number. Bacula checks this number
before reading the database to ensure that it is compatible with the Bacula binary file.

BaseFiles

Column Name Data Type Remark

BaseId integer Primary Key

BaseJobId integer JobId of Base Job

JobId integer Reference to Job

FileId integer Reference to File

FileIndex integer File Index number

The BaseFiles table contains all the File references for a particular JobId that point to a Base file
−− i.e. they were previously saved and hence were not saved in the current JobId but in
BaseJobId under FileId. FileIndex is the index of the file, and is used for optimization of Restore
jobs to prevent the need to read the FileId record when creating the in memory tree. This record

Bacula Storage Management System

Database Tables 507

is not yet implemented.

MySQL Table Definition

The commands used to create the MySQL tables are as follows:

USE bacula;
CREATE TABLE Filename (
 FilenameId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name BLOB NOT NULL,
 PRIMARY KEY(FilenameId),
 INDEX (Name(30))
);

CREATE TABLE Path (
 PathId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Path BLOB NOT NULL,
 PRIMARY KEY(PathId),
 INDEX (Path(50))
);

CREATE TABLE File (
 FileId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 FileIndex INTEGER UNSIGNED NOT NULL DEFAULT 0,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
 FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,
 MarkId INTEGER UNSIGNED NOT NULL DEFAULT 0,
 LStat TINYBLOB NOT NULL,
 MD5 TINYBLOB NOT NULL,
 PRIMARY KEY(FileId),
 INDEX (JobId),
 INDEX (PathId),
 INDEX (FilenameId)
);

CREATE TABLE Job (
 JobId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Job TINYBLOB NOT NULL,
 Name TINYBLOB NOT NULL,
 Type BINARY(1) NOT NULL,
 Level BINARY(1) NOT NULL,
 ClientId INTEGER NOT NULL REFERENCES Client,
 JobStatus BINARY(1) NOT NULL,
 SchedTime DATETIME NOT NULL,
 StartTime DATETIME NOT NULL,
 EndTime DATETIME NOT NULL,
 JobTDate BIGINT UNSIGNED NOT NULL,
 VolSessionId INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolSessionTime INTEGER UNSIGNED NOT NULL DEFAULT 0,
 JobFiles INTEGER UNSIGNED NOT NULL DEFAULT 0,
 JobBytes BIGINT UNSIGNED NOT NULL,
 JobErrors INTEGER UNSIGNED NOT NULL DEFAULT 0,
 JobMissingFiles INTEGER UNSIGNED NOT NULL DEFAULT 0,
 PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,

Bacula Storage Management System

MySQL Table Definition 508

 FileSetId INTEGER UNSIGNED NOT NULL REFERENCES FileSet,
 PurgedFiles TINYINT NOT NULL DEFAULT 0,
 HasBase TINYINT NOT NULL DEFAULT 0,
 PRIMARY KEY(JobId),
 INDEX (Name(128))
);

CREATE TABLE FileSet (
 FileSetId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 FileSet TINYBLOB NOT NULL,
 MD5 TINYBLOB NOT NULL,
 CreateTime DATETIME NOT NULL,
 PRIMARY KEY(FileSetId)
);

CREATE TABLE JobMedia (
 JobMediaId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 MediaId INTEGER UNSIGNED NOT NULL REFERENCES Media,
 FirstIndex INTEGER UNSIGNED NOT NULL DEFAULT 0,
 LastIndex INTEGER UNSIGNED NOT NULL DEFAULT 0,
 StartFile INTEGER UNSIGNED NOT NULL DEFAULT 0,
 EndFile INTEGER UNSIGNED NOT NULL DEFAULT 0,
 StartBlock INTEGER UNSIGNED NOT NULL DEFAULT 0,
 EndBlock INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolIndex INTEGER UNSIGNED NOT NULL DEFAULT 0,
 PRIMARY KEY(JobMediaId),
 INDEX (JobId, MediaId)
);

CREATE TABLE Media (
 MediaId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 VolumeName TINYBLOB NOT NULL,
 Slot INTEGER NOT NULL DEFAULT 0,
 PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,
 MediaType TINYBLOB NOT NULL,
 FirstWritten DATETIME NOT NULL,
 LastWritten DATETIME NOT NULL,
 LabelDate DATETIME NOT NULL,
 VolJobs INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolFiles INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolBlocks INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolMounts INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolBytes BIGINT UNSIGNED NOT NULL DEFAULT 0,
 VolErrors INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolWrites INTEGER UNSIGNED NOT NULL DEFAULT 0,
 VolCapacityBytes BIGINT UNSIGNED NOT NULL,
 VolStatus ENUM('Full', 'Archive', 'Append', 'Recycle', 'Purged',
 'Read−Only', 'Disabled', 'Error', 'Busy', 'Used', 'Cleaning') NOT NULL,
 Recycle TINYINT NOT NULL DEFAULT 0,
 VolRetention BIGINT UNSIGNED NOT NULL DEFAULT 0,
 VolUseDuration BIGINT UNSIGNED NOT NULL DEFAULT 0,
 MaxVolJobs INTEGER UNSIGNED NOT NULL DEFAULT 0,
 MaxVolFiles INTEGER UNSIGNED NOT NULL DEFAULT 0,
 MaxVolBytes BIGINT UNSIGNED NOT NULL DEFAULT 0,
 InChanger TINYINT NOT NULL DEFAULT 0,
 MediaAddressing TINYINT NOT NULL DEFAULT 0,
 VolReadTime BIGINT UNSIGNED NOT NULL DEFAULT 0,
 VolWriteTime BIGINT UNSIGNED NOT NULL DEFAULT 0,
 PRIMARY KEY(MediaId),

Bacula Storage Management System

MySQL Table Definition 509

 INDEX (PoolId)
);

CREATE TABLE Pool (
 PoolId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name TINYBLOB NOT NULL,
 NumVols INTEGER UNSIGNED NOT NULL DEFAULT 0,
 MaxVols INTEGER UNSIGNED NOT NULL DEFAULT 0,
 UseOnce TINYINT NOT NULL,
 UseCatalog TINYINT NOT NULL,
 AcceptAnyVolume TINYINT DEFAULT 0,
 VolRetention BIGINT UNSIGNED NOT NULL,
 VolUseDuration BIGINT UNSIGNED NOT NULL,
 MaxVolJobs INTEGER UNSIGNED NOT NULL DEFAULT 0,
 MaxVolFiles INTEGER UNSIGNED NOT NULL DEFAULT 0,
 MaxVolBytes BIGINT UNSIGNED NOT NULL,
 AutoPrune TINYINT DEFAULT 0,
 Recycle TINYINT DEFAULT 0,
 PoolType ENUM('Backup', 'Copy', 'Cloned', 'Archive', 'Migration', 'Scratch') NOT NULL,
 LabelFormat TINYBLOB,
 Enabled TINYINT DEFAULT 1,
 ScratchPoolId INTEGER UNSIGNED DEFAULT 0 REFERENCES Pool,
 RecyclePoolId INTEGER UNSIGNED DEFAULT 0 REFERENCES Pool,
 UNIQUE (Name(128)),
 PRIMARY KEY (PoolId)
);

CREATE TABLE Client (
 ClientId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 Name TINYBLOB NOT NULL,
 Uname TINYBLOB NOT NULL, /* full uname −a of client */
 AutoPrune TINYINT DEFAULT 0,
 FileRetention BIGINT UNSIGNED NOT NULL,
 JobRetention BIGINT UNSIGNED NOT NULL,
 UNIQUE (Name(128)),
 PRIMARY KEY(ClientId)
);

CREATE TABLE BaseFiles (
 BaseId INTEGER UNSIGNED AUTO_INCREMENT,
 BaseJobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 FileId INTEGER UNSIGNED NOT NULL REFERENCES File,
 FileIndex INTEGER UNSIGNED,
 PRIMARY KEY(BaseId)
);

CREATE TABLE UnsavedFiles (
 UnsavedId INTEGER UNSIGNED AUTO_INCREMENT,
 JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
 PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
 FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,
 PRIMARY KEY (UnsavedId)
);

CREATE TABLE Version (
 VersionId INTEGER UNSIGNED NOT NULL
);

Bacula Storage Management System

MySQL Table Definition 510

−− Initialize Version
INSERT INTO Version (VersionId) VALUES (7);

CREATE TABLE Counters (
 Counter TINYBLOB NOT NULL,
 MinValue INTEGER,
 MaxValue INTEGER,
 CurrentValue INTEGER,
 WrapCounter TINYBLOB NOT NULL,
 PRIMARY KEY (Counter(128))
);

Bacula File Services Index

Bacula Developer's Guide
The Network Backup Solution

Copyright © 2000−2004
Kern Sibbald and John Walker

Bacula Storage Management System

MySQL Table Definition 511

http://www.bacula.org/

